Connect with us

The Conversation

Scientists and Indigenous leaders team up to conserve seals and an ancestral way of life at Yakutat, Alaska

Published

on

theconversation.com – Aron L. Crowell, Arctic Archaeologist, Smithsonian Institution – 2024-06-07 07:42:33

Ancestral seal hunting happened at the edge of the Sít Tlein (Hubbard) glacier.
Emily Kearney-Williams © Smithsonian Institution

Aron L. Crowell, Smithsonian Institution and Judith Dax̱ootsú Ramos, University of Alaska Southeast

Five hundred years ago, in a mountain-rimmed ocean fjord in southeast Alaska, Tlingit hunters armed with bone-tipped harpoons eased their canoes through chunks of floating ice, stalking seals near Sít Tlein (Hubbard) glacier. They must have glanced nervously up at the glacier’s looming, fractured face, aware that cascades of ice could thunder down and imperil the boats – and their lives. As they drew near, they would have asked the seals to give themselves as food for the people and talked to the spirit of Sít Tlein to release the animals from his care.

Tlingit elders in the Alaska Native village of Yakutat today describe their ancestors’ daring pursuit of harbor seals, or “tsaa,” and the people’s respect for the spirits of the mountains, glaciers, ocean and animals of their subarctic world.

Long ago, they say, migrating clans of the Eyak, Ahtna and Tlingit tribes settled Yakutat fjord as the glacier retreated, shifting their hunting camps over time to stay close to the ice floe rookery where the animals give birth each spring. Clan leaders managed the hunt to avoid premature harvesting, overhunting or waste, reflecting Indigenous values of respect and balance between people and nature.

Now, Yakutat’s 300 Tlingit residents continue this way of life in modern form, harvesting more than 100 different fish, birds, sea mammals, land game and plants for subsistence use. Harbor seals are the most important, their rich meat and blubber prepared using traditional recipes and eaten at everyday meals and memorial potlatch feasts.

man and woman sit at rocky edge of water, she holds a rifle
Through a mix of teaching and lived experience, ecological knowledge is passed on from one generation to the next. George and Judith Ramos at Disenchantment Bay, 2011.
© Smithsonian Institution

Yet the community faces a crisis: The dramatic decline of the Gulf of Alaska seal population due to commercial hunting in the mid-20th century and the failure of the animals to recover because of warming ocean waters. To protect the seals and their way of life, residents are turning to traditional ecological knowledge and ancestral conservation practices.

We are an Arctic archaeologist who studies human interactions with the marine ecosystem and a Tlingit tribal historian of the Yakutat Kwáashk’i Kwáan clan. We are two of the leaders of a project that examined the historical roots of the situation.

Our collaborative research, which brought together archaeologists, environmental scientists, Tlingit elders and the Yakutat Tlingit Tribe, has been published as the book “Laaxaayík, Near the Glacier: Indigenous History and Ecology at Yakutat Fiord, Alaska.” In it, we detail an Indigenous people’s changing way of life and evolving relationship to their glacial environment over the past 1,000 years. To do so, we combined Indigenous knowledge of history and ecology with scientific methods and data.

Ancestral sealing

According to oral tradition, the village of Tlákw.aan (“old town”) was built on an island in Yakutat fjord by the Ginex Kwáan, an Ahtna clan from the Copper River that migrated across the mountains, intermarried with the Eyak and traded ceremonial copper shields for land in their new territory. They subsisted on the fjord’s abundant resources and hunted at the seal rookery near the retreating glacier, then located a few miles to the north.

Today Tlákw.aan is a cluster of clan house foundations in a quiet forest clearing, and our excavations there in 2014 were aimed at learning more about the lives of the inhabitants and their use of seals before Western contact.

Radiocarbon dating shows that Tlákw.aan was built around 1450 A.D., aligning oral accounts with geologists’ reconstruction of the glacier’s position at that time. Artifacts confirm the Ahtna and Eyak identities of the inhabitants. Sealing items found at the site include harpoon points, stone oil lamps, skin scrapers and copper flensing knives. Harbor seal bones are common, with over half from young animals taken at the rookery.

The site reflects aboriginal conditions – an abundant seal population, reliance on seals for meat, oil and skins, and sustainable hunting at the glacial rookery.

Impact of commercial sealing

The U.S. purchase of Alaska from Russia in 1867 disrupted traditional sealing at Yakutat. To meet rising global demand for seal skins and oil, the Alaska Commercial Company supplied Alaska Native communities with rifles and recruited them to kill harbor seals by the thousands.

Yakutat was a principal hunting ground for the new industry from about 1870 to 1915, and each spring the entire community would move from their main winter village to hunting camps near the glacier. Men shot seals and women prepared the skins, smoked the meat and rendered blubber into oil. In the fall, the men paddled seagoing canoes, laden with seal products for trade, to the Alaska Commercial Company’s post in Prince William Sound.

photo of people on rocky shoreline with tents and stretched seal skins
An 1899 photo of a section of the Ḵeik’uliyáa sealing camp.
Edward Curtis, National Museum of the American Indian, Smithsonian Institution (P10970)

We compared historical data and elders’ accounts of this era with archaeological evidence from Keik’uliyáa, the largest camp. The scale of the enterprise is evident in photographs taken in 1899 that show long rows of canvas tents, smokehouses, seal skins drying on frames, beached hunting canoes and women flensing piles of seal carcasses. Inside rock outlines of the tents, we found glass beads, rifle cartridges, nails, glass containers and other trade goods reflecting the community’s changing culture and its incorporation into the capitalist market system.

three people seated on ground use hand tools to dig in the brown earth
A 2013 archaeological dig at the 19th-century Ḵeik’uliyáa sealing campsite uncovered glass trade beads, rifle cartridges, metal utensils, ceramics and toys.
© Smithsonian Institution

Commercial hunting overtaxed the seals’ capacity to reproduce, leading to a population crash in the 1920s. This cycle repeated in the 1960s when world prices for skins jumped and hundreds of thousands of harbor seals were taken in the Gulf of Alaska by Alaska Native hunters, exceeding the sustainable yield. The seal population declined by 80%–90%.

Although commercial sealing ended in 1972 with the Marine Mammal Protection Act, the seals have never recovered. The days when the ice floes were “black with seals,” as Yakutat elder George Ramos Sr. remembered, are over, perhaps forever. Ocean warming driven by global climate change and an unfavorable cycle of the Pacific Decadal Oscillation have reduced fish that are important in the seals’ diet, clouding prospects for their comeback.

man holds a piece of raw meat at shoulder height
Ronnie Converse, Yakutat’s ‘seal chef,’ holds a piece of seal meat and blubber that will be thinly sliced, salted and smoked to make bacon in May 2014.
© Smithsonian Institution

Caring for seals and the community

In response, Yakutat Natives have changed their diet and greatly reduced hunting, taking 345 seals in 2015 – about one per person – compared with 640 in 1996. Very little hunting is now done at the ice floe rookery, allowing the seals to raise their pups undisturbed.

The community cooperates with the Alaska Department of Fish and Game, National Oceanic and Atmospheric Administration and Alaska Native Harbor Seal Commission to monitor and co-manage the herd, contributing their Indigenous expertise in seal behavior and ecology. They have also been active in efforts to protect the seal rookery from disturbance by cruise ships.

The Yakutat people are recommitting to ancestral principles of responsible care and spiritual regard for seals, seeking to ensure the species’ survival and continuation of the life-sustaining Indigenous tradition of sealing.The Conversation

Aron L. Crowell, Arctic Archaeologist, Smithsonian Institution and Judith Dax̱ootsú Ramos, Assistant Professor of Northwest Coast Arts, University of Alaska Southeast

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Colors are objective, according to two philosophers − even though the blue you see doesn’t match what I see

Published

on

theconversation.com – Elay Shech, Professor of Philosophy, Auburn University – 2025-04-25 07:55:00

What appear to be blue and green spirals are actually the same color.
Akiyoshi Kitaoka

Elay Shech, Auburn University and Michael Watkins, Auburn University

Is your green my green? Probably not. What appears as pure green to me will likely look a bit yellowish or blueish to you. This is because visual systems vary from person to person. Moreover, an object’s color may appear differently against different backgrounds or under different lighting.

These facts might naturally lead you to think that colors are subjective. That, unlike features such as length and temperature, colors are not objective features. Either nothing has a true color, or colors are relative to observers and their viewing conditions.

But perceptual variation has misled you. We are philosophers who study colors, objectivity and science, and we argue in our book “The Metaphysics of Colors” that colors are as objective as length and temperature.

Perceptual variation

There is a surprising amount of variation in how people perceive the world. If you offer a group of people a spectrum of color chips ranging from chartreuse to purple and asked them to pick the unique green chip – the chip with no yellow or blue in it – their choices would vary considerably. Indeed, there wouldn’t be a single chip that most observers would agree is unique green.

Generally, an object’s background can result in dramatic changes in how you perceive its colors. If you place a gray object against a lighter background, it will appear darker than if you place it against a darker background. This variation in perception is perhaps most striking when viewing an object under different lighting, where a red apple could look green or blue.

Of course, that you experience something differently does not prove that what is experienced is not objective. Water that feels cold to one person may not feel cold to another. And although we do not know who is feeling the water “correctly,” or whether that question even makes sense, we can know the temperature of the water and presume that this temperature is independent of your experience.

Similarly, that you can change the appearance of something’s color is not the same as changing its color. You can make an apple look green or blue, but that is not evidence that the apple is not red.

Apple under a gradient of red to blue light
Under different lighting conditions, objects take on different colors.
Gyozo Vaczi/iStock via Getty Images Plus

For comparison, the Moon appears larger when it’s on the horizon than when it appears near its zenith. But the size of the Moon has not changed, only its appearance. Hence, that the appearance of an object’s color or size varies is, by itself, no reason to think that its color and size are not objective features of the object. In other words, the properties of an object are independent of how they appear to you.

That said, given that there is so much variation in how objects appear, how do you determine what color something actually is? Is there a way to determine the color of something despite the many different experiences you might have of it?

Matching colors

Perhaps determining the color of something is to determine whether it is red or blue. But we suggest a different approach. Notice that squares that appear to be the same shade of pink against different backgrounds look different against the same background.

Green, purple and orange squares with smaller squares in shades of pink placed at their centers and at the bottom of the image
The smaller squares may appear to be the same color, but if you compare them with the strip of squares at the bottom, they’re actually different shades.
Shobdohin/Wikimedia Commons, CC BY-SA

It’s easy to assume that to prove colors are objective would require knowing which observers, lighting conditions and backgrounds are the best, or “normal.” But determining the right observers and viewing conditions is not required for determining the very specific color of an object, regardless of its name. And it is not required to determine whether two objects have the same color.

To determine whether two objects have the same color, an observer would need to view the objects side by side against the same background and under various lighting conditions. If you painted part of a room and find that you don’t have enough paint, for instance, finding a match might be very tricky. A color match requires that no observer under any lighting condition will see a difference between the new paint and the old.

YouTube video
Is the dress yellow and white or black and blue?

That two people can determine whether two objects have the same color even if they don’t agree on exactly what that color is – just as a pool of water can have a particular temperature without feeling the same to me and you – seems like compelling evidence to us that colors are objective features of our world.

Colors, science and indispensability

Everyday interactions with colors – such as matching paint samples, determining whether your shirt and pants clash, and even your ability to interpret works of art – are hard to explain if colors are not objective features of objects. But if you turn to science and look at the many ways that researchers think about colors, it becomes harder still.

For example, in the field of color science, scientific laws are used to explain how objects and light affect perception and the colors of other objects. Such laws, for instance, predict what happens when you mix colored pigments, when you view contrasting colors simultaneously or successively, and when you look at colored objects in various lighting conditions.

The philosophers Hilary Putnam and Willard van Orman Quine made famous what is known as the indispensability argument. The basic idea is that if something is indispensable to science, then it must be real and objective – otherwise, science wouldn’t work as well as it does.

For example, you may wonder whether unobservable entities such as electrons and electromagnetic fields really exist. But, so the argument goes, the best scientific explanations assume the existence of such entities and so they must exist. Similarly, because mathematics is indispensable to contemporary science, some philosophers argue that this means mathematical objects are objective and exist independently of a person’s mind.

Blue damselfish, seeming iridescent against a black background
The color of an animal can exert evolutionary pressure.
Paul Starosta/Stone via Getty Images

Likewise, we suggest that color plays an indispensable role in evolutionary biology. For example, researchers have argued that aposematism – the use of colors to signal a warning for predators – also benefits an animal’s ability to gather resources. Here, an animal’s coloration works directly to expand its food-gathering niche insofar as it informs potential predators that the animal is poisonous or venomous.

In fact, animals can exploit the fact that the same color pattern can be perceived differently by different perceivers. For instance, some damselfish have ultraviolet face patterns that help them be recognized by other members of their species and communicate with potential mates while remaining largely hidden to predators unable to perceive ultraviolet colors.

In sum, our ability to determine whether objects are colored the same or differently and the indispensable roles they play in science suggest that colors are as real and objective as length and temperature.The Conversation

Elay Shech, Professor of Philosophy, Auburn University and Michael Watkins, Professor of Philosophy, Auburn University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Colors are objective, according to two philosophers − even though the blue you see doesn’t match what I see appeared first on theconversation.com

Continue Reading

The Conversation

Perfect brownies baked at high altitude are possible thanks to Colorado’s home economics pioneer Inga Allison

Published

on

theconversation.com – Tobi Jacobi, Professor of English, Colorado State University – 2025-04-22 07:47:00

Students work in the high-altitude baking laboratory.
Archives and Special Collections, Colorado State University

Tobi Jacobi, Colorado State University and Caitlin Clark, Colorado State University

Many bakers working at high altitudes have carefully followed a standard recipe only to reach into the oven to find a sunken cake, flat cookies or dry muffins.

Experienced mountain bakers know they need a few tricks to achieve the same results as their fellow artisans working at sea level.

These tricks are more than family lore, however. They originated in the early 20th century thanks to research on high-altitude baking done by Inga Allison, then a professor at Colorado State University. It was Allison’s scientific prowess and experimentation that brought us the possibility of perfect high-altitude brownies and other baked goods.

A recipe for brownies at high altitude.
Inga Allison’s high-altitude brownie recipe.
Archives and Special Collections, Colorado State University

We are two current academics at CSU whose work has been touched by Allison’s legacy.

One of us – Caitlin Clark – still relies on Allison’s lessons a century later in her work as a food scientist in Colorado. The other – Tobi Jacobi – is a scholar of women’s rhetoric and community writing, and an enthusiastic home baker in the Rocky Mountains, who learned about Allison while conducting archival research on women’s work and leadership at CSU.

That research developed into “Knowing Her,” an exhibition Jacobi developed with Suzanne Faris, a CSU sculpture professor. The exhibit highlights dozens of women across 100 years of women’s work and leadership at CSU and will be on display through mid-August 2025 in the CSU Fort Collins campus Morgan Library.

A pioneer in home economics

Inga Allison is one of the fascinating and accomplished women who is part of the exhibit.

Allison was born in 1876 in Illinois and attended the University of Chicago, where she completed the prestigious “science course” work that heavily influenced her career trajectory. Her studies and research also set the stage for her belief that women’s education was more than preparation for domestic life.

In 1908, Allison was hired as a faculty member in home economics at Colorado Agricultural College, which is now CSU. She joined a group of faculty who were beginning to study the effects of altitude on baking and crop growth. The department was located inside Guggenheim Hall, a building that was constructed for home economics education but lacked lab equipment or serious research materials.

A sepia-toned photograph of Inga Allison, a white woman in dark clothes with her hair pulled back.
Inga Allison was a professor of home economics at Colorado Agricultural College, where she developed recipes that worked in high altitudes.
Archives and Special Collections, Colorado State University

Allison took both the land grant mission of the university with its focus on teaching, research and extension and her particular charge to prepare women for the future seriously. She urged her students to move beyond simple conceptions of home economics as mere preparation for domestic life. She wanted them to engage with the physical, biological and social sciences to understand the larger context for home economics work.

Such thinking, according to CSU historian James E. Hansen, pushed women college students in the early 20th century to expand the reach of home economics to include “extension and welfare work, dietetics, institutional management, laboratory research work, child development and teaching.”

News articles from the early 1900s track Allison giving lectures like “The Economic Side of Natural Living” to the Colorado Health Club and talks on domestic science to ladies clubs and at schools across Colorado. One of her talks in 1910 focused on the art of dishwashing.

Allison became the home economics department chair in 1910 and eventually dean. In this leadership role, she urged then-CSU President Charles Lory to fund lab materials for the home economics department. It took 19 years for this dream to come to fruition.

In the meantime, Allison collaborated with Lory, who gave her access to lab equipment in the physics department. She pieced together equipment to conduct research on the relationship between cooking foods in water and atmospheric pressure, but systematic control of heat, temperature and pressure was difficult to achieve.

She sought other ways to conduct high-altitude experiments and traveled across Colorado where she worked with students to test baking recipes in varied conditions, including at 11,797 feet in a shelter house on Fall River Road near Estes Park.

Early 1900s car traveling in the Rocky Mountains.
Inga Allison tested her high-altitude baking recipes at 11,797 feet at the shelter house on Fall River Road, near Estes Park, Colorado.
Archives and Special Collections, Colorado State University

But Allison realized that recipes baked at 5,000 feet in Fort Collins and Denver simply didn’t work in higher altitudes. Little advancement in baking methods occurred until 1927, when the first altitude baking lab in the nation was constructed at CSU thanks to Allison’s research. The results were tangible — and tasty — as public dissemination of altitude-specific baking practices began.

A 1932 bulletin on baking at altitude offers hundreds of formulas for success at heights ranging from 4,000 feet to over 11,000 feet. Its author, Marjorie Peterson, a home economics staff person at the Colorado Experiment Station, credits Allison for her constructive suggestions and support in the development of the booklet.

Science of high-altitude baking

As a senior food scientist in a mountain state, one of us – Caitlin Clark – advises bakers on how to adjust their recipes to compensate for altitude. Thanks to Allison’s research, bakers at high altitude today can anticipate how the lower air pressure will affect their recipes and compensate by making small adjustments.

The first thing you have to understand before heading into the kitchen is that the higher the altitude, the lower the air pressure. This lower pressure has chemical and physical effects on baking.

Air pressure is a force that pushes back on all of the molecules in a system and prevents them from venturing off into the environment. Heat plays the opposite role – it adds energy and pushes molecules to escape.

When water is boiled, molecules escape by turning into steam. The less air pressure is pushing back, the less energy is required to make this happen. That’s why water boils at lower temperatures at higher altitudes – around 200 degrees Fahrenheit in Denver compared with 212 F at sea level.

So, when baking is done at high altitude, steam is produced at a lower temperature and earlier in the baking time. Carbon dioxide produced by leavening agents also expands more rapidly in the thinner air. This causes high-altitude baked goods to rise too early, before their structure has fully set, leading to collapsed cakes and flat muffins. Finally, the rapid evaporation of water leads to over-concentration of sugars and fats in the recipe, which can cause pastries to have a gummy, undesirable texture.

Allison learned that high-altitude bakers could adjust to their environment by reducing the amount of sugar or increasing liquids to prevent over-concentration, and using less of leavening agents like baking soda or baking powder to prevent dough from rising too quickly.

Allison was one of many groundbreaking women in the early 20th century who actively supported higher education for women and advanced research in science, politics, humanities and education in Colorado.

Others included Grace Espy-Patton, a professor of English and sociology at CSU from 1885 to 1896 who founded an early feminist journal and was the first woman to register to vote in Fort Collins. Miriam Palmer was an aphid specialist and master illustrator whose work crafting hyper-realistic wax apples in the early 1900s allowed farmers to confirm rediscovery of the lost Colorado Orange apple, a fruit that has been successfully propagated in recent years.

In 1945, Allison retired as both an emerita professor and emerita dean at CSU. She immediately stepped into the role of student and took classes in Russian and biochemistry.

In the fall of 1958, CSU opened a new dormitory for women that was named Allison Hall in her honor.

“I had supposed that such a thing happened only to the very rich or the very dead,” Allison told reporters at the dedication ceremony.

Read more of our stories about Colorado.The Conversation

Tobi Jacobi, Professor of English, Colorado State University and Caitlin Clark, Senior Food Scientist at the CSU Spur Food Innovation Center, Colorado State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Perfect brownies baked at high altitude are possible thanks to Colorado’s home economics pioneer Inga Allison appeared first on theconversation.com

Continue Reading

The Conversation

Why don’t humans have hair all over their bodies? A biologist explains our lack of fur

Published

on

theconversation.com – Maria Chikina, Assistant Professor of Computational and Systems Biology, University of Pittsburgh – 2025-04-21 07:33:00

Some mammals are super hairy, some are not.
Ed Jones/AFP via Getty Images

Maria Chikina, University of Pittsburgh

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to CuriousKidsUS@theconversation.com.


Why don’t humans have hair all over their bodies like other animals? – Murilo, age 5, Brazil


Have you ever wondered why you don’t have thick hair covering your whole body like a dog, cat or gorilla does?

Humans aren’t the only mammals with sparse hair. Elephants, rhinos and naked mole rats also have very little hair. It’s true for some marine mammals, such as whales and dolphins, too.

Scientists think the earliest mammals, which lived at the time of the dinosaurs, were quite hairy. But over hundreds of millions of years, a small handful of mammals, including humans, evolved to have less hair. What’s the advantage of not growing your own fur coat?

I’m a biologist who studies the genes that control hairiness in mammals. Why humans and a small number of other mammals are relatively hairless is an interesting question. It all comes down to whether certain genes are turned on or off.

Hair benefits

Hair and fur have many important jobs. They keep animals warm, protect their skin from the sun and injuries and help them blend into their surroundings.

They even assist animals in sensing their environment. Ever felt a tickle when something almost touches you? That’s your hair helping you detect things nearby.

Humans do have hair all over their bodies, but it is generally sparser and finer than that of our hairier relatives. A notable exception is the hair on our heads, which likely serves to protect the scalp from the sun. In human adults, the thicker hair that develops under the arms and between the legs likely reduces skin friction and aids in cooling by dispersing sweat.

So hair can be pretty beneficial. There must have been a strong evolutionary reason for people to lose so much of it.

Why humans lost their hair

The story begins about 7 million years ago, when humans and chimpanzees took different evolutionary paths. Although scientists can’t be sure why humans became less hairy, we have some strong theories that involve sweat.

Humans have far more sweat glands than chimps and other mammals do. Sweating keeps you cool. As sweat evaporates from your skin, heat energy is carried away from your body. This cooling system was likely crucial for early human ancestors, who lived in the hot African savanna.

Of course, there are plenty of mammals living in hot climates right now that are covered with fur. Early humans were able to hunt those kinds of animals by tiring them out over long chases in the heat – a strategy known as persistence hunting.

Humans didn’t need to be faster than the animals they hunted. They just needed to keep going until their prey got too hot and tired to flee. Being able to sweat a lot, without a thick coat of hair, made this endurance possible.

Genes that control hairiness

To better understand hairiness in mammals, my research team compared the genetic information of 62 different mammals, from humans to armadillos to dogs and squirrels. By lining up the DNA of all these different species, we were able to zero in on the genes linked to keeping or losing body hair.

Among the many discoveries we made, we learned humans still carry all the genes needed for a full coat of hair – they are just muted or switched off.

In the story of “Beauty and the Beast,” the Beast is covered in thick fur, which might seem like pure fantasy. But in real life some rare conditions can cause people to grow a lot of hair all over their bodies. This condition, called hypertrichosis, is very unusual and has been called “werewolf syndrome” because of how people who have it look.

A detailed painting of a man and a woman standing next to one another in historical looking clothes. The man's face is covered in hair, while the woman's is not.
Petrus Gonsalvus and his wife, Catherine, painted by Joris Hoefnagel, circa 1575.
National Gallery of Art

In the 1500s, a Spanish man named Petrus Gonsalvus was born with hypertrichosis. As a child he was sent in an iron cage like an animal to Henry II of France as a gift. It wasn’t long before the king realized Petrus was like any other person and could be educated. In time, he married a lady, forming the inspiration for the “Beauty and the Beast” story.

While you will probably never meet someone with this rare trait, it shows how genes can lead to unique and surprising changes in hair growth.


Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.The Conversation

Maria Chikina, Assistant Professor of Computational and Systems Biology, University of Pittsburgh

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Why don’t humans have hair all over their bodies? A biologist explains our lack of fur appeared first on theconversation.com

Continue Reading

Trending