Connect with us

The Conversation

Orbital resonance − the striking gravitational dance done by planets with aligning orbits

Published

on

Orbital resonance − the striking gravitational dance done by planets with aligning orbits

Planets can gravitationally affect each other when their orbits line up.
NASA/JPL-Caltech

Chris Impey, University of Arizona

Planets orbit their parent stars while separated by enormous distances – in our solar system, planets are like grains of sand in a region the size of a football field. The time that planets take to orbit their suns have no specific relationship to each other.

But sometimes, their orbits display striking patterns. For example, astronomers studying six planets orbiting a star 100 light years away have just found that they orbit their star with an almost rhythmic beat, in perfect synchrony. Each pair of planets completes their orbits in times that are the ratios of whole numbers, allowing the planets to align and exert a gravitational push and pull on the other during their orbit.

This type of gravitational alignment is called orbital resonance, and it’s like a harmony between distant planets.

I’m an astronomer who studies and writes about cosmology. Researchers have discovered over 5,600 exoplanets in the past 30 years, and their extraordinary diversity continues to surprise astronomers.

Harmony of the spheres

Greek mathematician Pythagoras discovered the principles of musical harmony 2,500 years ago by analyzing the sounds of blacksmiths’ hammers and plucked strings.

He believed mathematics was at the heart of the natural world and proposed that the Sun, Moon and planets each emit unique hums based on their orbital properties. He thought this “music of the spheres” would be imperceptible to the human ear.

Four hundred years ago, Johannes Kepler picked up this idea. He proposed that musical intervals and harmonies described the motions of the six known planets at the time.

To Kepler, the solar system had two basses, Jupiter and Saturn; a tenor, Mars; two altos, Venus and Earth; and a soprano, Mercury. These roles reflected how long it took each planet to orbit the Sun, lower speeds for the outer planets and higher speeds for the inner planets.

He called the book he wrote on these mathematical relationships “The Harmony of the World.” While these ideas have some similarities to the concept of orbital resonance, planets don’t actually make sounds, since sound can’t travel through the vacuum of space.

Orbital resonance

Resonance happens when planets or moons have orbital periods that are ratios of whole numbers. The orbital period is the time taken for a planet to make one complete circuit of the star. So, for example, two planets orbiting a star would be in a 2:1 resonance when one planet takes twice as long as the other to orbit the star. Resonance is seen in only 5% of planetary systems.

A simple animated diagram showing a planet, as a dot, with three smaller dots making circles around it, and occasionally flashing when two of the three line up.
Orbital resonance, as seen with Jupiter’s moons, happens when planetary bodies’ orbits line up – for example, Io orbits Jupiter four times in the time it takes Europa to orbit twice and Ganymede to orbit once.
WolfmanSF/Wikimedia Commons

In the solar system, Neptune and Pluto are in a 3:2 resonance. There’s also a triple resonance, 4:2:1, among Jupiter’s three moons: Ganymede, Europa and Io. In the time it takes Ganymede to orbit Jupiter, Europa orbits twice and Io orbits four times. Resonances occur naturally, when planets happen to have orbital periods that are the ratio of whole numbers.

Musical intervals describe the relationship between two musical notes. In the musical analogy, important musical intervals based on ratios of frequencies are the fourth, 4:3, the fifth, 3:2, and the octave, 2:1. Anyone who plays the guitar or the piano might recognize these intervals.

YouTube video
Musical intervals can be used to create scales and harmony.

Orbital resonances can change how gravity influences two bodies, causing them to speed up, slow down, stabilize on their orbital path and sometimes have their orbits disrupted.

Think of pushing a child on a swing. A planet and a swing both have a natural frequency. Give the child a push that matches the swing motion and they’ll get a boost. They’ll also get a boost if you push them every other time they’re in that position, or every third time. But push them at random times, sometimes with the motion of the swing and sometimes against, and they get no boost.

YouTube video
Orbital resonance can cause planets or asteroids to speed up or start to wobble.

For planets, the boost can keep them continuing on their orbital paths, but it’s much more likely to disrupt their orbits.

Exoplanet resonance

Exoplanets, or planets outside the solar system, show striking examples of resonance, not just between two objects but also between resonant “chains” involving three or more objects.


A square box with the words 'Art & Science Collide' and a drawing of a lightbulb with its wire filament in the shape of a brain, surrounded by a circle.
Art & Science Collide series.

This article is part of Art & Science Collide, a series examining the intersections between art and science.

You may be interested in:

Literature inspired my medical career: Why the humanities are needed in health care

I wrote a play for children about integrating the arts into STEM fields – here’s what I learned about interdisciplinary thinking

Pictures have been teaching doctors medicine for centuries − a medical illustrator explains how


The star Gliese 876 has three planets with orbit period ratios of 4:2:1, just like Jupiter’s three moons. Kepler 223 has four planets with ratios of 8:6:4:3.

The red dwarf Kepler 80 has five planets with ratios of 9:6:4:3:2, and TOI 178 has six planets, of which five are in a resonant chain with ratios of 18:9:6:4:3.

TRAPPIST-1 is the record holder. It has seven Earth-like planets, two of which might be habitable, with orbit ratios of 24:15:9:6:4:3:2.

The newest example of a resonant chain is the HD 110067 system. It’s about 100 light years away and has six sub-Neptune planets, a common type of exoplanet, with orbit ratios of 54:36:24:16:12:9. The discovery is interesting because most resonance chains are unstable and disappear over time.

Despite these examples, resonant chains are rare, and only 1% of all planetary systems display them. Astronomers think that planets form in resonance, but small gravitational nudges from passing stars and wandering planets erase the resonance over time. With HD 110067, the resonant chain has survived for billions of years, offering a rare and pristine view of the system as it was when it formed.

Orbit sonification

Astronomers use a technique called sonification to translate complex visual data into sound. It gives people a different way to appreciate the beautiful images from the Hubble Space Telescope, and it has been applied to X-ray data and gravitational waves.

With exoplanets, sonification can convey the mathematical relationships of their orbits. Astronomers at the European Southern Observatory created what they call “music of the spheres” for the TOI 178 system by associating a sound on a pentatonic scale to each of the five planets.

YouTube video
Music from planetary orbits, created by astronomers at the European Southern Observatory.

A similar musical translation has been done for the TRAPPIST-1 system, with the orbital frequencies scaled up by a factor of 212 million to bring them into audible range.

Astronomers have also created a sonification for the HD 110067 system. People may not agree on whether these renditions sound like actual music, but it’s inspiring to see Pythagoras’ ideas realized after 2,500 years.The Conversation

Chris Impey, University Distinguished Professor of Astronomy, University of Arizona

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

How does your brain create new memories? Neuroscientists discover ‘rules’ for how neurons encode new information

Published

on

theconversation.com – William Wright, Postdoctoral Scholar in Neurobiology, University of California, San Diego – 2025-04-17 13:00:00

Neurons that fire together sometimes wire together.
PASIEKA/Science Photo Library via Getty Images

William Wright, University of California, San Diego and Takaki Komiyama, University of California, San Diego

Every day, people are constantly learning and forming new memories. When you pick up a new hobby, try a recipe a friend recommended or read the latest world news, your brain stores many of these memories for years or decades.

But how does your brain achieve this incredible feat?

In our newly published research in the journal Science, we have identified some of the “rules” the brain uses to learn.

Learning in the brain

The human brain is made up of billions of nerve cells. These neurons conduct electrical pulses that carry information, much like how computers use binary code to carry data.

These electrical pulses are communicated with other neurons through connections between them called synapses. Individual neurons have branching extensions known as dendrites that can receive thousands of electrical inputs from other cells. Dendrites transmit these inputs to the main body of the neuron, where it then integrates all these signals to generate its own electrical pulses.

It is the collective activity of these electrical pulses across specific groups of neurons that form the representations of different information and experiences within the brain.

Diagram of neuron, featuring a relatively large cell body with a long branching tail extending from it
Neurons are the basic units of the brain.
OpenStax, CC BY-SA

For decades, neuroscientists have thought that the brain learns by changing how neurons are connected to one another. As new information and experiences alter how neurons communicate with each other and change their collective activity patterns, some synaptic connections are made stronger while others are made weaker. This process of synaptic plasticity is what produces representations of new information and experiences within your brain.

In order for your brain to produce the correct representations during learning, however, the right synaptic connections must undergo the right changes at the right time. The “rules” that your brain uses to select which synapses to change during learning – what neuroscientists call the credit assignment problem – have remained largely unclear.

Defining the rules

We decided to monitor the activity of individual synaptic connections within the brain during learning to see whether we could identify activity patterns that determine which connections would get stronger or weaker.

To do this, we genetically encoded biosensors in the neurons of mice that would light up in response to synaptic and neural activity. We monitored this activity in real time as the mice learned a task that involved pressing a lever to a certain position after a sound cue in order to receive water.

We were surprised to find that the synapses on a neuron don’t all follow the same rule. For example, scientists have often thought that neurons follow what are called Hebbian rules, where neurons that consistently fire together, wire together. Instead, we saw that synapses on different locations of dendrites of the same neuron followed different rules to determine whether connections got stronger or weaker. Some synapses adhered to the traditional Hebbian rule where neurons that consistently fire together strengthen their connections. Other synapses did something different and completely independent of the neuron’s activity.

Our findings suggest that neurons, by simultaneously using two different sets of rules for learning across different groups of synapses, rather than a single uniform rule, can more precisely tune the different types of inputs they receive to appropriately represent new information in the brain.

In other words, by following different rules in the process of learning, neurons can multitask and perform multiple functions in parallel.

Future applications

This discovery provides a clearer understanding of how the connections between neurons change during learning. Given that most brain disorders, including degenerative and psychiatric conditions, involve some form of malfunctioning synapses, this has potentially important implications for human health and society.

For example, depression may develop from an excessive weakening of the synaptic connections within certain areas of the brain that make it harder to experience pleasure. By understanding how synaptic plasticity normally operates, scientists may be able to better understand what goes wrong in depression and then develop therapies to more effectively treat it.

Microscopy image of mouse brain cross-section with lower middle-half dusted green
Changes to connections in the amygdala – colored green – are implicated in depression.
William J. Giardino/Luis de Lecea Lab/Stanford University via NIH/Flickr, CC BY-NC

These findings may also have implications for artificial intelligence. The artificial neural networks underlying AI have largely been inspired by how the brain works. However, the learning rules researchers use to update the connections within the networks and train the models are usually uniform and also not biologically plausible. Our research may provide insights into how to develop more biologically realistic AI models that are more efficient, have better performance, or both.

There is still a long way to go before we can use this information to develop new therapies for human brain disorders. While we found that synaptic connections on different groups of dendrites use different learning rules, we don’t know exactly why or how. In addition, while the ability of neurons to simultaneously use multiple learning methods increases their capacity to encode information, what other properties this may give them isn’t yet clear.

Future research will hopefully answer these questions and further our understanding of how the brain learns.The Conversation

William Wright, Postdoctoral Scholar in Neurobiology, University of California, San Diego and Takaki Komiyama, Professor of Neurobiology, University of California, San Diego

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post How does your brain create new memories? Neuroscientists discover ‘rules’ for how neurons encode new information appeared first on theconversation.com

Continue Reading

The Conversation

OpenAI beats DeepSeek on sentence-level reasoning

Published

on

theconversation.com – Manas Gaur, Assistant Professor of Computer Science and Electrical Engineering, University of Maryland, Baltimore County – 2025-04-17 07:42:00

DeepSeek’s language AI rocked the tech industry, but it comes up short on one measure.
Lionel Bonaventure/AFP via Getty Images

Manas Gaur, University of Maryland, Baltimore County

ChatGPT and other AI chatbots based on large language models are known to occasionally make things up, including scientific and legal citations. It turns out that measuring how accurate an AI model’s citations are is a good way of assessing the model’s reasoning abilities.

An AI model “reasons” by breaking down a query into steps and working through them in order. Think of how you learned to solve math word problems in school.

Ideally, to generate citations an AI model would understand the key concepts in a document, generate a ranked list of relevant papers to cite, and provide convincing reasoning for how each suggested paper supports the corresponding text. It would highlight specific connections between the text and the cited research, clarifying why each source matters.

The question is, can today’s models be trusted to make these connections and provide clear reasoning that justifies their source choices? The answer goes beyond citation accuracy to address how useful and accurate large language models are for any information retrieval purpose.

I’m a computer scientist. My colleagues − researchers from the AI Institute at the University of South Carolina, Ohio State University and University of Maryland Baltimore County − and I have developed the Reasons benchmark to test how well large language models can automatically generate research citations and provide understandable reasoning.

We used the benchmark to compare the performance of two popular AI reasoning models, DeepSeek’s R1 and OpenAI’s o1. Though DeepSeek made headlines with its stunning efficiency and cost-effectiveness, the Chinese upstart has a way to go to match OpenAI’s reasoning performance.

Sentence specific

The accuracy of citations has a lot to do with whether the AI model is reasoning about information at the sentence level rather than paragraph or document level. Paragraph-level and document-level citations can be thought of as throwing a large chunk of information into a large language model and asking it to provide many citations.

In this process, the large language model overgeneralizes and misinterprets individual sentences. The user ends up with citations that explain the whole paragraph or document, not the relatively fine-grained information in the sentence.

Further, reasoning suffers when you ask the large language model to read through an entire document. These models mostly rely on memorizing patterns that they typically are better at finding at the beginning and end of longer texts than in the middle. This makes it difficult for them to fully understand all the important information throughout a long document.

Large language models get confused because paragraphs and documents hold a lot of information, which affects citation generation and the reasoning process. Consequently, reasoning from large language models over paragraphs and documents becomes more like summarizing or paraphrasing.

The Reasons benchmark addresses this weakness by examining large language models’ citation generation and reasoning.

YouTube video
How DeepSeek R1 and OpenAI o1 compare generally on logic problems.

Testing citations and reasoning

Following the release of DeepSeek R1 in January 2025, we wanted to examine its accuracy in generating citations and its quality of reasoning and compare it with OpenAI’s o1 model. We created a paragraph that had sentences from different sources, gave the models individual sentences from this paragraph, and asked for citations and reasoning.

To start our test, we developed a small test bed of about 4,100 research articles around four key topics that are related to human brains and computer science: neurons and cognition, human-computer interaction, databases and artificial intelligence. We evaluated the models using two measures: F-1 score, which measures how accurate the provided citation is, and hallucination rate, which measures how sound the model’s reasoning is − that is, how often it produces an inaccurate or misleading response.

Our testing revealed significant performance differences between OpenAI o1 and DeepSeek R1 across different scientific domains. OpenAI’s o1 did well connecting information between different subjects, such as understanding how research on neurons and cognition connects to human-computer interaction and then to concepts in artificial intelligence, while remaining accurate. Its performance metrics consistently outpaced DeepSeek R1’s across all evaluation categories, especially in reducing hallucinations and successfully completing assigned tasks.

OpenAI o1 was better at combining ideas semantically, whereas R1 focused on making sure it generated a response for every attribution task, which in turn increased hallucination during reasoning. OpenAI o1 had a hallucination rate of approximately 35% compared with DeepSeek R1’s rate of nearly 85% in the attribution-based reasoning task.

In terms of accuracy and linguistic competence, OpenAI o1 scored about 0.65 on the F-1 test, which means it was right about 65% of the time when answering questions. It also scored about 0.70 on the BLEU test, which measures how well a language model writes in natural language. These are pretty good scores.

DeepSeek R1 scored lower, with about 0.35 on the F-1 test, meaning it was right about 35% of the time. However, its BLEU score was only about 0.2, which means its writing wasn’t as natural-sounding as OpenAI’s o1. This shows that o1 was better at presenting that information in clear, natural language.

OpenAI holds the advantage

On other benchmarks, DeepSeek R1 performs on par with OpenAI o1 on math, coding and scientific reasoning tasks. But the substantial difference on our benchmark suggests that o1 provides more reliable information, while R1 struggles with factual consistency.

Though we included other models in our comprehensive testing, the performance gap between o1 and R1 specifically highlights the current competitive landscape in AI development, with OpenAI’s offering maintaining a significant advantage in reasoning and knowledge integration capabilities.

These results suggest that OpenAI still has a leg up when it comes to source attribution and reasoning, possibly due to the nature and volume of the data it was trained on. The company recently announced its deep research tool, which can create reports with citations, ask follow-up questions and provide reasoning for the generated response.

The jury is still out on the tool’s value for researchers, but the caveat remains for everyone: Double-check all citations an AI gives you.The Conversation

Manas Gaur, Assistant Professor of Computer Science and Electrical Engineering, University of Maryland, Baltimore County

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post OpenAI beats DeepSeek on sentence-level reasoning appeared first on theconversation.com

Continue Reading

The Conversation

Are twins allergic to the same things?

Published

on

theconversation.com – Breanne Hayes Haney, Allergy and Immunology Fellow-in-Training, School of Medicine, West Virginia University – 2025-04-14 07:42:00

If one has a reaction to a new food, is the other more likely to as well?
BjelicaS/iStock via Getty Images Plus

Breanne Hayes Haney, West Virginia University

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to curiouskidsus@theconversation.com.


Are twins allergic to the same things? – Ella, age 7, Philadelphia


Allergies, whether spring sneezes due to pollen or trouble breathing triggered by a certain food, are caused by a combination of someone’s genes and the environment they live in.

The more things two people share, the higher their chances of being allergic to the same things. Twins are more likely to share allergies because of everything they have in common, but the story doesn’t end there.

I’m an allergist and immunologist, and part of my job is treating patients who have environmental, food or drug allergies. Allergies are really complex, and a lot of factors play a role in who gets them and who doesn’t.

What is an allergy?

Your immune system makes defense proteins called antibodies. Their job is to keep watch and attack any invading germs or other dangerous substances that get inside your body before they can make you sick.

An allergy happens when your body mistakes some usually harmless substance for a harmful intruder. These trigger molecules are called allergens.

diagram of Y-shaped antibodies sticking to other molecules
Y-shaped antibodies are meant to grab onto any harmful germs, but sometimes they make a mistake and grab something that isn’t actually a threat: an allergen.
ttsz/iStock via Getty Images Plus

The antibodies stick like suction cups to the allergens, setting off an immune system reaction. That process leads to common allergy symptoms: sneezing, a runny or stuffy nose, itchy, watery eyes, a cough. These symptoms can be annoying but minor.

Allergies can also cause a life-threatening reaction called anaphylaxis that requires immediate medical attention. For example, if someone ate a food they were allergic to, and then had throat swelling and a rash, that would be considered anaphylaxis.

The traditional treatment for anaphylaxis is a shot of the hormone epinephrine into the leg muscle. Allergy sufferers can also carry an auto-injector to give themselves an emergency shot in case of a life-threatening case of anaphylaxis. An epinephrine nasal spray is now available, too, which also works very quickly.

A person can be allergic to things outdoors, like grass or tree pollen and bee stings, or indoors, like pets and tiny bugs called dust mites that hang out in carpets and mattresses.

A person can also be allergic to foods. Food allergies affect 4% to 5% of the population. The most common are to cow’s milk, eggs, wheat, soy, peanuts, tree nuts, fish, shellfish and sesame. Sometimes people grow out of allergies, and sometimes they are lifelong.

Who gets allergies?

Each antibody has a specific target, which is why some people may only be allergic to one thing.

The antibodies responsible for allergies also take care of cleaning up any parasites that your body encounters. Thanks to modern medicine, people in the United States rarely deal with parasites. Those antibodies are still ready to fight, though, and sometimes they misfire at silly things, like pollen or food.

Hygiene and the environment around you can also play a role in how likely it is you’ll develop allergies. Basically, the more different kinds of bacteria that you’re exposed to earlier in life, the less likely you are to develop allergies. Studies have even shown that kids who grow up on farms, kids who have pets before the age of 5, and kids who have a lot of siblings are less likely to develop allergies. Being breastfed as a baby can also protect against having allergies.

Children who grow up in cities are more likely to develop allergies, probably due to air pollution, as are children who are around people who smoke.

Kids are less likely to develop food allergies if they try foods early in life rather than waiting until they are older. Sometimes a certain job can contribute to an adult developing environmental allergies. For example, hairdressers, bakers and car mechanics can develop allergies due to chemicals they work with.

Genetics can also play a huge role in why some people develop allergies. If a mom or dad has environmental or food allergies, their child is more likely to have allergies. Specifically for peanut allergies, if your parent or sibling is allergic to peanuts, you are seven times more likely to be allergic to peanuts!

two boys in identical shirts side by side look at each other
Do you have an allergy twin in your family?
Ronnie Kaufman/DigitalVision via Getty Images Plus

Identical in allergies?

Back to the idea of twins: Yes, they can be allergic to the same things, but not always.

Researchers in Australia found that 60% to 70% of twins in one study both had environmental allergies, and identical twins were more likely to share allergies than fraternal (nonidentical) twins. Identical twins share 100% of their genes, while fraternal twins only share about 50% of their genes, the same as any pair of siblings.

A lot more research has been done on the genetics of food allergies. One peanut allergy study found that identical twins were more likely to both be allergic to peanuts than fraternal twins were.

So, twins can be allergic to the same things, and it’s more likely that they will be, based on their shared genetics and growing up together. But twins aren’t automatically allergic to the exact same things.

Imagine if two twins are separated at birth and raised in different homes: one on a farm with pets and one in the inner city. What if one’s parents smoke, and the others don’t? What if one lives with a lot of siblings and the other is an only child? They certainly could develop different allergies, or maybe not develop allergies at all.

Scientists like me are continuing to research allergies, and we hope to have more answers in the future.


Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.The Conversation

Breanne Hayes Haney, Allergy and Immunology Fellow-in-Training, School of Medicine, West Virginia University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Are twins allergic to the same things? appeared first on theconversation.com

Continue Reading

Trending