Connect with us

The Conversation

Indian election was awash in deepfakes – but AI was a net positive for democracy

Published

on

theconversation.com – Vandinika Shukla, Fellow, Practicing Democracy Project, Harvard Kennedy School – 2024-06-10 07:38:35

An Indian AI media company maps Prime Minister Narendra Modi’s face.

Himanshu Sharma/picture alliance via Getty Images

Vandinika Shukla, Harvard Kennedy School and Bruce Schneier, Harvard Kennedy School

As India concluded the world’s largest election on June 5, 2024, with over 640 million votes counted, observers could assess how the various parties and factions used artificial intelligence technologies – and what lessons that holds for the rest of the world.

The campaigns made extensive use of AI, including deepfake impersonations of candidates, celebrities and dead politicians. By some estimates, millions of Indian voters viewed deepfakes.

But, despite fears of widespread disinformation, for the most part the campaigns, candidates and activists used AI constructively in the election. They used AI for typical political activities, including mudslinging, but primarily to better connect with voters.

Deepfakes without the deception

Political parties in India spent an estimated US$50 million on authorized AI-generated content for targeted communication with their constituencies this election cycle. And it was largely successful.

Indian political strategists have long recognized the influence of personality and emotion on their constituents, and they started using AI to bolster their messaging. Young and upcoming AI companies like The Indian Deepfaker, which started out serving the entertainment industry, quickly responded to this growing demand for AI-generated campaign material.

In January, Muthuvel Karunanidhi, former chief minister of the southern state of Tamil Nadu for two decades, appeared via video at his party’s youth wing conference. He wore his signature yellow scarf, white shirt, dark glasses and had his familiar stance – head slightly bent sideways. But Karunanidhi died in 2018. His party authorized the deepfake.

Deepfake technology brought a dead politician into the Indian election campaign.

In February, the All-India Anna Dravidian Progressive Federation party’s official X account posted an audio clip of Jayaram Jayalalithaa, the iconic superstar of Tamil politics colloquially called “Amma” or “Mother.” Jayalalithaa died in 2016.

Meanwhile, voters received calls from their local representatives to discuss local issues – except the leader on the other end of the phone was an AI impersonation. Bhartiya Janta Party (BJP) workers like Shakti Singh Rathore have been frequenting AI startups to send personalized videos to specific voters about the government benefits they received and asking for their vote over WhatsApp.

Multilingual boost

Deepfakes were not the only manifestation of AI in the Indian elections. Long before the election began, Indian Prime Minister Narendra Modi addressed a tightly packed crowd celebrating links between the state of Tamil Nadu in the south of India and the city of Varanasi in the northern state of Uttar Pradesh. Instructing his audience to put on earphones, Modi proudly announced the launch of his “new AI technology” as his Hindi speech was translated to Tamil in real time.

In a country with 22 official languages and almost 780 unofficial recorded languages, the BJP adopted AI tools to make Modi’s personality accessible to voters in regions where Hindi is not easily understood. Since 2022, Modi and his BJP have been using the AI-powered tool Bhashini, embedded in the NaMo mobile app, to translate Modi’s speeches with voiceovers in Telugu, Tamil, Malayalam, Kannada, Odia, Bengali, Marathi and Punjabi.

As part of their demos, some AI companies circulated their own viral versions of Modi’s famous monthly radio show “Mann Ki Baat,” which loosely translates to “From the Heart,” which they voice cloned to regional languages.

Adversarial uses

Indian political parties doubled down on online trolling, using AI to augment their ongoing meme wars. Early in the election season, the Indian National Congress released a short clip to its 6 million followers on Instagram, taking the title track from a new Hindi music album named “Chor” (thief). The video grafted Modi’s digital likeness onto the lead singer and cloned his voice with reworked lyrics critiquing his close ties to Indian business tycoons.

The BJP retaliated with its own video, on its 7-million-follower Instagram account, featuring a supercut of Modi campaigning on the streets, mixed with clips of his supporters but set to unique music. It was an old patriotic Hindi song sung by famous singer Mahendra Kapoor, who passed away in 2008 but was resurrected with AI voice cloning.

Modi himself quote-tweeted an AI-created video of him dancing – a common meme that alters footage of rapper Lil Yachty on stage – commenting “such creativity in peak poll season is truly a delight.”

In some cases, the violent rhetoric in Modi’s campaign that put Muslims at risk and incited violence was conveyed using generative AI tools, but the harm can be traced back to the hateful rhetoric itself and not necessarily the AI tools used to spread it.

The Indian experience

India is an early adopter, and the country’s experiments with AI serve as an illustration of what the rest of the world can expect in future elections. The technology’s ability to produce nonconsensual deepfakes of anyone can make it harder to tell truth from fiction, but its consensual uses are likely to make democracy more accessible.

The Indian election’s embrace of AI that began with entertainment, political meme wars, emotional appeals to people, resurrected politicians and persuasion through personalized phone calls to voters has opened a pathway for the role of AI in participatory democracy.

The surprise outcome of the election, with the BJP’s failure to win its predicted parliamentary majority, and India’s return to a deeply competitive political system especially highlights the possibility for AI to have a positive role in deliberative democracy and representative governance.

Lessons for the world’s democracies

It’s a goal of any political party or candidate in a democracy to have more targeted touch points with their constituents. The Indian elections have shown a unique attempt at using AI for more individualized communication across linguistically and ethnically diverse constituencies, and making their messages more accessible, especially to rural, low-income populations.

AI and the future of participatory democracy could make constituent communication not just personalized but also a dialogue, so voters can share their demands and experiences directly with their representatives – at speed and scale.

India can be an example of taking its recent fluency in AI-assisted party-to-people communications and moving it beyond politics. The government is already using these platforms to provide government services to citizens in their native languages.

If used safely and ethically, this technology could be an opportunity for a new era in representative governance, especially for the needs and experiences of people in rural areas to reach Parliament.The Conversation

Vandinika Shukla, Fellow, Practicing Democracy Project, Harvard Kennedy School and Bruce Schneier, Adjunct Lecturer in Public Policy, Harvard Kennedy School

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Why do I feel better when I wake myself up instead of relying on an alarm? A neurologist explains the science of a restful night’s sleep

Published

on

theconversation.com – Beth Ann Malow, Professor of Neurology and Pediatrics, Vanderbilt University – 2024-11-18 07:25:00

Your internal body clock can help wake you up without an alarm.

Riska/E+ via Getty Images

Beth Ann Malow, Vanderbilt University

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to curiouskidsus@theconversation.com.


Why do I feel better rested when I wake myself up than I do if my alarm or another person wakes me up? – Calleigh H., age 11, Oklahoma


We’ve all experienced this: You’re in the middle of a lovely dream. Perhaps you’re flying. As you’re soaring through the air, you meet an eagle. The eagle looks at you, opens its beak and – BEEP! BEEP! BEEP!

Your alarm goes off. Dream over, time to get up.

Many people – kids and adults alike – notice that when they wake up naturally from sleep, they feel more alert than if an alarm or another person, like a parent, wakes them up. Why is that?

I’m a neurologist who studies the brain, specifically what happens in the brain when you’re asleep. I also take care of children and adults who don’t sleep well and want to sleep better. My research involves working with parents to help them teach their children good sleep habits.

To understand how to sleep better, and why waking up naturally from sleep helps you feel more alert, you need to start by understanding sleep cycles.

The sleep cycle

The sleep cycle consists of four stages. One of these is REM, which stands for rapid eye movements. The other three are non-REM stages. When you fall asleep, you first go into a state of drowsiness called non-REM Stage 1.

This is followed by deeper stages of sleep, called non-REM stages 2 and 3. Each stage of non-REM is deeper than the one before. Then, about 90 minutes after you first fall asleep, you enter the fourth stage, which is REM sleep. This is a stage of lighter sleep where you do much of your dreaming. After a few minutes, you return to non-REM sleep again.

Segments of a circle indicate the four stages of the sleep cycle: Non-REM 1, Non-REM 2, Non-REM 3, and REM.

The four stages of the sleep cycle.

The Conversation, CC BY

These cycles repeat themselves throughout the night, with most people having four to six cycles of non-REM sleep alternating with REM sleep each night. As the night goes on, the cycles contain less non-REM sleep and more REM sleep. This is why it’s important to get enough sleep, so that the body can get enough of both REM sleep and non-REM sleep.

REM vs. non-REM sleep

How do researchers like me know that a person is in non-REM vs. REM sleep? In the sleep lab, we can tell from their brain waves, eye movements and the tension in their muscles, like in the chin. These are measured by putting sensors called electrodes on the scalp, around the eyes and on the chin.

These electrodes pick up brain activity, which varies from waves that are low in amplitude (the height of the wave) and relatively fast to waves that are high in amplitude (a taller wave) and relatively slow. When we are awake, the height of the waves is low and the waves are relatively fast. In contrast, during sleep, the waves get higher and slower.

Non-REM Stage 3 has the tallest and slowest waves of all the sleep stages. In REM sleep, brain waves are low in amplitude and relatively fast, and the eye movements are rapid, too. People need both non-REM and REM stages for a healthy brain, so they can learn and remember.

Waking up naturally

When you wake up in the morning on your own, it’s usually as you come to the end of whatever stage of sleep you were in. Think of it like getting off the train when it comes to a stop at the station. But when an alarm or someone else wakes you up, it’s like jumping off the train between stops, which can feel jolting. That’s why it’s good to wake up naturally whenever possible.

People can actually train their brains to wake up at a consistent time each day that is a natural stopping point. Brains have an internal 24-hour clock that dictates when you first start to feel sleepy and when you wake up. This is related to our circadian rhythms.

You can adjust your circadian rhythm so that you wake naturally each morning.

Training the brain to wake up at a consistent time

First, it’s important to go to bed at a consistent time that allows you to get enough sleep. If you stay up too late doing homework or looking at your phone, that can interfere with getting enough sleep and make you dependent on an alarm – or your parents – to wake you up.

Other things that can help you fall asleep at a healthy time include getting physical activity during the day and avoiding coffee, soda or other drinks or foods that contain caffeine. Physical activity increases brain chemicals that make it easier to fall asleep, while caffeine does the opposite and keeps you awake.

Second, you need to be aware of light in your environment. Light too late in the evening, including from screens, can interfere with your brain’s production of a chemical called melatonin that promotes sleep. But in the morning when you wake up, you need to be exposed to light.

Morning light helps you synchronize, or align, your circadian rhythms with the outside world and makes it easier to fall asleep at night. The easiest way to do this is to open up your shades or curtains in your room. In the winter, some people use light boxes to simulate sunlight, which helps them align their rhythms.

Benefits of a good night’s sleep

A good sleep routine entails both a consistent bedtime and wake time and regularly getting enough sleep. That usually means 9-11 hours for school-age kids who are not yet teens, and 8-10 hours for teens.

This will help you be at your best to learn at school, boost your mood, help you maintain a healthy weight and promote many other aspects of health.


Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.The Conversation

Beth Ann Malow, Professor of Neurology and Pediatrics, Vanderbilt University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Why do I feel better when I wake myself up instead of relying on an alarm? A neurologist explains the science of a restful night’s sleep appeared first on theconversation.com

Continue Reading

The Conversation

As the Taurid meteor shower passes by Earth, pseudoscience rains down – and obscures a potential real threat from space

Published

on

theconversation.com – Mark Boslough, Research Associate Professor of Earth and Planetary Sciences, University of New Mexico – 2024-11-15 07:31:00

This image of a Taurid fireball was taken in 2014 by NASA’s All Sky Fireball Network in Tullahoma, Tenn.

NASA

Mark Boslough, University of New Mexico

With the Taurid meteor shower now hitting the night skies worldwide, look for what could be a celestial treat – you might see shooting stars, and maybe even fireballs, the biggest and brightest meteors.

As the full moon begins to wane after Nov. 15, the sky will be darker, due to diminishing moonlight, so finding the meteors will get easier. That said, the best visibility for the meteors through the rest of the month will come just before moonrise each night.

Beyond the light show, there is something else that scientists as well as onlookers have long wondered about: the possibility that bigger chunks are in the Taurid meteor streams, chunks the size of boulders, buildings or even mountains.

And if that’s true, could one of those monster-sized Taurid objects collide with Earth? Could they wipe out a city, or worse? Is it possible that’s already happened, sometime in our planet’s past?

This animation simulates the motion of the hypothetical Taurid meteor swarm through space.

As a physicist who researches the risk that comets and asteroids pose to the Earth, I’m aware that this is a subject where pseudoscience often competes with actual science. So let’s try to find the line between fact and fiction.

Pig Pen, glowing tails and shooting stars

Comet Encke is the so-called parent comet of the Taurid meteors. It’s relatively small, just over 3 miles (almost 5 kilometers) in diameter, and crosses inside Earth’s orbit and back out every 3.3 years.

As Encke moves, it sheds dust wherever it goes, like the Peanuts character Pig Pen. A meteor shower occurs when that dust and debris light up while entering Earth’s atmosphere at high speeds. Ultimately, they vanish into an incandescent puff of vapor with a glowing tail, creating the illusion of a “shooting star.”

But dust isn’t all that breaks off the comet. So do bigger chunks, the size of pebbles and stones. When they collide with the air, they create the much brighter fireballs, which sometimes explode.

Against a black and white starscape, a bright spot appears in the center of the photo.

An image of comet Encke, taken by NASA’s MESSENGER spacecraft in November 2013.

NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/Southwest Research Institute

Doomsday showers

The “coherent catastrophism” hypothesis suggests that comet Encke was created when an even larger comet broke up into pieces; Encke survived as the largest piece. The hypothesis also suggests that other mountain-sized chunks broke off and coalesced into a large swarm of fragments too. If such a swarm exists, there is a possibility that those large chunks could one day hit Earth as it passes through the swarm.

But just because something might be physically possible doesn’t mean that it exists. Mainstream astronomers have rejected this theory’s most catastrophic predictions. Among other reasons, scientists have never observed high concentrations of these mountain-sized objects.

Despite the lack of evidence, researchers on the fringes of science have embraced the idea. They claim the Earth experienced a global catastrophic swarm 12,900 years ago; the impact, they say, caused continent-wide firestorms, floods and abrupt climate change that led to the mass extinction of large mammals, such as woolly mammoths, and the disappearance of early Americans known as the Clovis people.

The evidence for a catastrophic cause of these events, most of which did not happen, is lacking. Nevertheless, the idea has gained a large following and formed the basis for British author Graham Hancock’s popular TV series, “Ancient Apocalypse.”

A black and white photo of a forest of flattened trees.

This photo shows the flattened trees resulting from the Tunguska event.

Universal History Archives/Universal Images Group via Getty Images

The Tunguska event

But even outlandish ideas can have elements of truth, and there are hints that some objects – more than just dust and debris, but less than doomsday size – indeed exist in the Taurid meteor stream, and that the Earth has already encountered them.

One clue comes from an event on June 30, 1908, when an enormous explosion in the sky blew down millions of trees in Siberia. This was the Tunguska event – an airburst from an object that may have been up to 160 feet (about 50 meters) in diameter.

The collision unleashed several megatons of energy, which is roughly the equivalent of a large thermonuclear bomb. What happens is this: The incoming object penetrates deep into Earth’s atmosphere, and the dense air slows it down and heats it up until it vaporizes and explodes.

Could this object have been a Taurid? After all, the Taurids cross Earth’s orbit twice a year – not just in autumn, but also in June.

A fireball appears in the night sky.

In a 2015 photo, a glowing Taurid fireball descends over Lake Simcoe in Ontario, Canada.

Orchidpost/iStock via Getty Images Plus

Here’s the evidence: First, the descriptions of the trajectory of the Tunguska airburst, as reported by eyewitness observers, is consistent with that of an object coming from the Taurid stream.

What’s more, the pattern of blast damage on the ground beneath an airburst depends on the trajectory of the exploding object. Supercomputer simulations show that the shape of the surface blast that would be caused by an exploding Taurid object matches the pattern of fallen trees at Tunguska.

Finally, during the Taurid meteor shower in 1975, people observed large fireballs – and seismometers, previously placed on the Moon by Apollo astronauts, detected seismic events on the lunar surface. Scientists interpreted those events as impacts, presumably made by the Taurid meteors.

In 2032 and 2036, the Taurid swarm – assuming it exists – is predicted to be closer to the Earth than any time since 1975. That might mean the Moon, and perhaps the Earth, could be pelted again in those years.

There is time to figure this out. Scientists can expand their astronomical surveys to look for Tunguska-sized objects at the locations where they are predicted to be the next time they are in our vicinity.

Most scientists remain skeptical that such a swarm exists, but it’s the job of planetary defenders to investigate possible threats, even if the risk is small. After all, a Tunguska-sized object could conceivably demolish a major city and kill millions; an accurate count of objects on a potential collision course is essential.

Put doomsday scenarios and ancient apocalypses aside. The real question, and still an open one, is whether a Taurid swarm could deliver more Tunguska-sized objects than would otherwise be expected. This would mean we have underestimated the risk from future airbursts.The Conversation

Mark Boslough, Research Associate Professor of Earth and Planetary Sciences, University of New Mexico

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post As the Taurid meteor shower passes by Earth, pseudoscience rains down – and obscures a potential real threat from space appeared first on theconversation.com

Continue Reading

The Conversation

Knee problems tend to flare up as you age – an orthopedic specialist explains available treatment options

Published

on

theconversation.com – Angie Brown, Clinical Associate Professor of Physical Therapy, Quinnipiac University – 2024-11-15 07:32:00

Knee problems can hinder mobility and erode your quality of life.

Witthaya Prasongsin/Moment via Getty Images

Angie Brown, Quinnipiac University

Knee injuries are common in athletes, accounting for 41% of all athletic injuries. But knee injuries aren’t limited to competitive athletes. In our everyday lives, an accident or a quick movement in the wrong direction can injure the knee and require medical treatment. A quarter of the adult population worldwide experiences knee pain each year

As a physical therapist and board-certified orthopedic specialist, I help patients of all ages with knee injuries and degenerative conditions.

Your knees have a huge impact on your mobility and overall quality of life, so it’s important to prevent knee problems whenever possible and address pain in these joints with appropriate treatments.

Healthy knees

The knee joint bones consist of the femur, tibia and patella. As in all healthy joints, smooth cartilage covers the surfaces of the bones, forming the joints and allowing for controlled movement.

diagram of a healthy knee

A healthy knee.

Inna Kharlamova/iStock/Getty Images Plus via Getty Images

Muscles, ligaments and tendons further support the knee joint. The anterior cruciate ligament, commonly known as the ACL, and posterior cruciate ligament, or PCL, provide internal stability to the knee. In addition, two tough pieces of fibrocartilage, called menisci, lie inside the joint, providing further stability and shock absorption.

All these structures work together to enable the knee to move smoothly and painlessly throughout everyday movement, whether bending to pick up the family cat or going for a run.

Causes of knee pain

Two major causes of knee pain are acute injury and osteoarthritis.

Ligaments such as the ACL and PCL can be stressed and torn when a shear force occurs between the femur and tibia. ACL injuries often occur when athletes land awkwardly on the knee or quickly pivot on a planted foot. Depending on the severity of the injury, these patients may undergo physical therapy, or they may require surgery for repair or replacement.

PCL injuries are less common. They occur when the tibia experiences a posterior or backward force. This type of injury is common in car accidents when the knee hits the dashboard, or when patients fall forward when walking up stairs.

The menisci can also experience degeneration and tearing from shear and rotary forces, especially during weight-bearing activities. These types of injuries often require rehabilitation through physical therapy or surgery.

Knee pain can also result from injury or overuse of the muscles and tendons surrounding the knee, including the quadriceps, hamstrings and patella tendon.

Both injuries to and overuse of the knee can lead to degenerative changes in the joint surfaces, known as osteoarthritis. Osteoarthritis is a progressive disease that can lead to pain, swelling and stiffness. This disease affects the knees of over 300 million people worldwide, most often those 50 years of age and up. American adults have a 40% chance of developing osteoarthritis that affects their daily lives, with the knee being the most commonly affected joint.

Age is also a factor in knee pain. The structure and function of your joints change as you age. Cartilage starts to break down, your body produces less synovial fluid to lubricate your joints, and muscle strength and flexibility decrease. This can lead to painful, restricted movement in the joint.

Risk factors

There are some risk factors for knee osteoarthritis that you cannot control, such as genetics, age, sex and your history of prior injuries.

Fortunately, there are several risk factors you can control that can predispose you to knee pain and osteoarthritis specifically. The first is excessive weight. Based on studies between 2017 and 2020, nearly 42% of all adult Americans are obese. This obesity is a significant risk factor for diabetes and osteoarthritis and can also play a role in other knee injuries.

A lack of physical activity is another risk, with 1 in 5 U.S. adults reporting that they’re inactive outside of work duties. This can result in less muscular support for the knee and more pressure on the joint itself.

An inflammatory diet also adds to the risk of knee pain from osteoarthritis. Research shows that the average American diet, often high in sugar and fat and low in fiber, can lead to changes to the gut microbiome that contribute to osteoarthritis pain and inflammation.

Preventing knee pain

Increasing physical activity is one of the key elements to preventing knee pain. Often physical therapy intervention for patients with knee osteoarthritis focuses on strengthening the knee to decrease pain and support the joint during movement.

The U.S. Department of Health and Human Services recommends that adults spend at least 150 to 300 minutes per week on moderate-intensity, or 75 to 150 minutes per week on vigorous-intensity aerobic physical activity. These guidelines do not change for adults who already have osteoarthritis, although their exercise may require less weight-bearing activities, such as swimming, biking or walking.

The agency also recommends that all adults do some form of resistance training at least two or more days a week. Adults with knee osteoarthritis particularly benefit from quadriceps-strengthening exercises, such as straight leg raises.

Treatments for knee pain

Conservative treatment of knee pain includes anti-inflammatory and pain medications and physical therapy.

Medical treatment for knee osteoarthritis may include cortisone injections to decrease inflammation or hyaluronic acid injections, which help lubricate the joint. The relief from these interventions is often temporary, as they do not stop the progression of the disease. But they can delay the need for surgery by one to three years on average, depending on the number of injections.

Physical therapy is generally a longer-lasting treatment option for knee pain. Physical therapy treatment leads to more sustained pain reduction and functional improvements when compared with cortisone injections treatment and some meniscal repairs.

Patients with osteoarthritis often benefit from total knee replacement, a surgery with a high success rate and lasting results.

Surgical interventions for knee pain include the repair, replacement or removal of the ACL, PCL, menisci or cartilage. When more conservative approaches fail, patients with osteoarthritis may benefit from a partial or total knee replacement to allow more pain-free movement. In these procedures, one or both sides of the knee joint are replaced by either plastic or metal components. Afterward, patients attend physical therapy to aid in the return of range of motion.

Although there are risks with any surgery, most patients who undergo knee replacement benefit from decreased pain and increased function, with 90% of all replacements lasting more than 15 years. But not all patients are candidates for such surgeries, as a successful outcome depends on the patient’s overall health and well-being.

New treatments on the horizon

New developments for knee osteoarthritis are focused on less invasive therapies. Recently, the U.S. Food and Drug Administration approved a new implant that acts as a shock absorber. This requires a much simpler procedure than a total knee replacement.

Other promising interventions include knee embolization, a procedure in which tiny particles are injected into the arteries near the knee to decrease blood flow to the area and reduce inflammation near the joint. Researchers are also looking into injectable solutions derived from human bodies, such as plasma-rich protein and fat cells, to decrease inflammation and pain from osteoarthritis. Human stem cells and their growth factors also show potential in treating knee osteoarthritis by potentially improving muscle atrophy and repairing cartilage.

Further research is needed on these novel interventions. However, any intervention that holds promise to stop or delay osteoarthritis is certainly encouraging for the millions of people afflicted with this disease.The Conversation

Angie Brown, Clinical Associate Professor of Physical Therapy, Quinnipiac University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Knee problems tend to flare up as you age – an orthopedic specialist explains available treatment options appeared first on theconversation.com

Continue Reading

Trending