Connect with us

The Conversation

How much does scientific progress cost? Without government dollars for research infrastructure, breakthroughs become improbable

Published

on

theconversation.com – Aliasger K. Salem, Bighley Chair and Professor of Pharmaceutical Sciences, University of Iowa – 2025-02-12 07:53:00

How much does scientific progress cost? Without government dollars for research infrastructure, breakthroughs become improbable

America may not maintain its position as a global leader in biomedical research without federal support.
Sean Gladwell/Moment via Getty Images

Aliasger K. Salem, University of Iowa

Biomedical research in the U.S. is world-class in part because of a long-standing partnership between universities and the federal government.

On Feb. 7, 2025, the U.S. National Institutes of Health issued a policy that could weaken the position of the United States as a global leader in scientific innovation by slashing funds to the infrastructure that allows universities and other institutions to conduct research in the first place.

Universities across the nation carry out research on behalf of the federal government. Central to this partnership is federal grant funding, which is awarded through a rigorous review process. These grants are the lifeblood of biomedical research in the U.S.

When you think of the costs of scientific research, you might picture the people who conduct the research, and the materials and lab equipment they use. But these don’t encompass all the essential components of research. Every scientific and medical breakthrough also depends on laboratory facilities; heating, air conditioning, ventilation and electricity; and personnel to ensure research is conducted securely and in accordance with federal regulations.

These critical indirect costs of research are both substantial and unavoidable, not least because it can be very expensive to build, maintain and equip space to conduct research at the frontiers of knowledge. The NIH stated that it spent more than US$35 billion on grants in the 2023 fiscal year, which went to more than 300,000 researchers at more than 2,500 universities, medical schools and other kinds of research institutions across the nation. Approximately $9 billion of this funding was allocated to indirect costs.

NIH grants have supported the direct costs of my own scientific research on developing treatments for conditions ranging from cancer to eye diseases. I would be unable to carry out my research without the support of the indirect costs the NIH plans to cut.

What are indirect costs?

Indirect costs, also known as facilities and administration costs, or overhead, are funds provided to institutions to cover expenses that are not directly tied to specific research projects but are essential for their execution. Unlike direct costs, which cover salaries, supplies and experiments, indirect costs support the overall research environment, ensuring that scientists have the necessary resources to conduct their work effectively.

Indirect costs include maintaining optimal laboratory spaces, specialized facilities providing services like imaging and gene analysis, high-speed computing, research security, patient and personnel safety, hazardous waste disposal, utilities, equipment maintenance, administrative support, regulatory compliance, information technology services, and maintenance staff to clean and supply labs and facilities.

YouTube video
Academic institutions conduct research on behalf of the federal government.

Research institutions that receive federal grants must comply with the rules and regulations established by the U.S. Office of Management and Budget. These guidelines dictate the indirect cost rates of each institution.

Institutions submit proposals to federal agencies that outline the costs associated with maintaining research infrastructure. The cost allocation division of the Department of Health and Human Services reviews these proposals to ensure compliance with federal policies.

Indirect rates can range from 15% to 70%, with the specific level depending on the research and infrastructure needs of an institution.

Typically, institutions undergo an exacting process to renegotiate their indirect rates every four years, factoring in components such as general, departmental and program administration, building and equipment depreciation, interest, operations and maintenance, and library expenses. Universities need to carefully justify these cost components to ensure the sustainability of research infrastructure and compliance with federal requirements.

Notably, indirect costs from grants do not cover the full cost of carrying out research at universities. In 2023, colleges and universities contributed approximately $27 billion of their own funding, such as money from their endowments, to support research. This included $6.8 billion in indirect costs that the federal government did not reimburse.

Slashing vital research funding

In its February announcement, the National Institutes of Health declared that it would no longer determine indirect costs rates based on the needs of each institution. Instead, it would issue a standard indirect cost rate of 15% across all grants. The rationale given by the agency for the cap is to “ensure that as many funds as possible go towards direct scientific research costs rather than administrative overhead.”

It notably comes after the Trump administration and Elon Musk have sought to slash federal spending, with Musk criticizing indirect cost rates as “a ripoff.”

A standard 15% rate would significantly affect an institution’s ability to maintain its research infrastructure. For example, if a university had a 50% indirect cost rate in 2024, it would receive $150,000 for a $100,000 grant, with $50,000 allocated to indirect costs. With the new NIH cap, this would drop to $115,000, with only $15,000 for indirect costs.

The scale of this cut in research support becomes apparent at the state level, with harms to both red and blue states. For example, Texas institutions would face a reduction of over $310 million, and institutions in Iowa a reduction of nearly $37 million. California would lose more than $800 million, and Washington over $178 million.

Person wearing nitrile gloves pipetting a liquid into a vial over a lab area
Research has both indirect and direct costs – and both are essential.
David Ryder/Stringer via Getty Images News

The NIH compared the new 15% cap to the indirect cost rates that foundations typically set for institutions of higher education. It pointed to the 10% rate granted by the Bill & Melinda Gates Foundation and Smith Richardson Foundation, the 12% rate of the Gordon and Betty Moore Foundation and Robert Wood Johnson Foundation, and the 15% rate of the Carnegie Corporation of New York, Chan Zuckerberg Initiative, John Templeton Foundation, Packard Foundation, and Rockefeller Foundation.

However, many researchers and funders have criticized this claim as misleading. A spokesperson for the Gates Foundation has previously stated that the listed rate does not reflect how the organization allocates its funds. Universities have pointed out that they often accept foundation grants with low or zero overhead rates because these grants constitute a relatively small portion of their funding and are often spent on early-stage faculty whose careers need additional support.

In addition, it is only because NIH grants cover a significant portion of their overhead costs that research institutions are able to accept foundation grants with such low indirect rates.

Biomedical researchers respond

Scientists and researchers responded to the NIH announcement with deep concern about the negative effects these funding cuts would have on biomedical research in the United States.

The Council on Governmental Relations, which monitors federal policy for major universities and medical research centers, stated that “America’s competitors will relish this self-inflicted wound,” urging the NIH to “rescind this dangerous policy before its harms are felt by Americans.”

The president and CEO of the Association of American Medical Colleges stated that the NIH policy would “diminish the nation’s research capacity, slowing scientific progress and depriving patients, families, and communities across the country of new treatments, diagnostics and preventative interventions.”

Research institutions, scientific societies, advocacy groups and lawmakers from both major political parties have pushed back against the 15% cap on indirect costs, urging NIH leadership to reconsider its policy.

Soon after the attorneys general of 22 states filed lawsuits challenging the policy, a federal judge issued a temporary pause in those states until lifted by the court.

Scientists expect the long-term effects of these funding cuts to significantly damage U.S. biomedical research. As the debate over federal support to academic research institutions unfolds, how institutions adapt and whether the NIH reconsiders its approach will determine the future of scientific research in the United States.The Conversation

Aliasger K. Salem, Bighley Chair and Professor of Pharmaceutical Sciences, University of Iowa

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post How much does scientific progress cost? Without government dollars for research infrastructure, breakthroughs become improbable appeared first on theconversation.com

The Conversation

Simple strategies can boost vaccination rates for adults over 65 − new study

Published

on

theconversation.com – Laurie Archbald-Pannone, Associate Professor of Medicine and Geriatrics, University of Virginia – 2025-03-14 07:51:00

Simple strategies can boost vaccination rates for adults over 65 − new study

Many older adults are not up to date on their vaccines.
Morsa Images via Getty Images

Laurie Archbald-Pannone, University of Virginia

Knowing which vaccines older adults should get and hearing a clear recommendation from their health care provider about why a particular vaccine is important strongly motivated them to get vaccinated. That’s a key finding in a recent study I co-authored in the journal Open Forum Infectious Diseases.

Adults over 65 have a higher risk of severe infections, but they receive routine vaccinations at lower rates than do other groups. My colleagues and I collaborated with six primary care clinics across the U.S. to test two approaches for increasing vaccination rates for older adults.

In all, 249 patients who were visiting their primary care providers participated in the study. Of these, 116 patients received a two-page vaccine discussion guide to read in the waiting room before their visit. Another 133 patients received invitations to attend a one-hour education session after their visit.

The guide, which we created for the study, was designed to help people start a conversation about vaccines with their providers. It included checkboxes for marking what made it hard for them to get vaccinated and which vaccines they want to know more about, as well as space to write down any questions they have. The guide also featured a chart listing recommended vaccines for older adults, with boxes where people could check off ones they had already received.

In the sessions, providers shared in-depth information about vaccines and vaccine-preventable diseases and facilitated a discussion to address vaccine hesitancy.

In a follow-up survey two months later, patients reported that the most significant barriers they faced were knowing when they should receive a particular vaccine, having concerns about side effects and securing transportation to a vaccination appointment.

The percentage of patients who said they wanted to get a vaccine increased from 68% to 79% after using the vaccine guide. Following each intervention, 80% of patients reported they discussed vaccines more in that visit than they had in prior visits.

Of the 14 health care providers who completed the follow-up survey, 57% reported increased vaccination rates following each approach. Half of the providers felt that the use of the vaccine guide was an effective strategy in guiding conversations with their patients.

YouTube video
A pamphlet at the doctor’s office can empower older patients to ask about vaccines.

Why it matters

Only about 15% of adults ages 60-64 and 26% of adults 65 and older are up to date on all the vaccines recommended for their age, according to CDC data from 2022. These include vaccines for COVID 19, influenza, tetanus, pneumococcal disease and shingles.

Yet studies consistently show that getting vaccinated reduces the risk of complications from these conditions in this age group.

My research shows that strategies that equip older adults with personalized information about vaccines empower them to start the conversation about vaccines with their clinicians and enable them to be active participants in their health care.

What’s next

In the future, we will explore whether engaging patients on this topic earlier is even more helpful than doing so in the waiting room before their visit.

This might involve having clinical team members or care coordinators connect with patients ahead of their visit, either by phone or through telemedicine that is designed specifically for older adults.

My research team plans to conduct a pilot study that tests this approach. We hope to learn whether reaching out to these patients before their clinic visits and helping them think through their vaccination status, which vaccines their provider recommends and what barriers they face in getting vaccinated will improve vaccination rates for this population.

The Research Brief is a short take on interesting academic work.The Conversation

Laurie Archbald-Pannone, Associate Professor of Medicine and Geriatrics, University of Virginia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Simple strategies can boost vaccination rates for adults over 65 − new study appeared first on theconversation.com

Continue Reading

The Conversation

3D printing will help space pioneers make homes, tools and other stuff they need to colonize the Moon and Mars

Published

on

theconversation.com – Sven Bilén, Professor of Engineering Design, Electrical Engineering and Aerospace Engineering, Penn State – 2025-03-13 07:51:00

3D printing could make many of the components for future structures on Mars.
3000ad/iStock via Getty Images Plus

Sven Bilén, Penn State

Throughout history, when pioneers set out across uncharted territory to settle in distant lands, they carried with them only the essentials: tools, seeds and clothing. Anything else would have to come from their new environment.

So they built shelter from local timber, rocks and sod; foraged for food and cultivated the soil beneath their feet; and fabricated tools from whatever they could scrounge up. It was difficult, but ultimately the successful ones made everything they needed to survive.

Something similar will take place when humanity leaves Earth for destinations such as the Moon and Mars – although astronauts will face even greater challenges than, for example, the Vikings did when they reached Greenland and Newfoundland. Not only will the astronauts have limited supplies and the need to live off the land; they won’t even be able to breathe the air.

Instead of axes and plows, however, today’s space pioneers will bring 3D printers. As an engineer and professor who is developing technologies to extend the human presence beyond Earth, I focus my work and research on these remarkable machines.

3D printers will make the tools, structures and habitats space pioneers need to survive in a hostile alien environment. They will enable long-term human presence on the Moon and Mars.

An astronaut holding a wrench poses for the camera.
NASA astronaut Barry Wilmore holds a 3D-printed wrench made aboard the International Space Station.
NASA

From hammers to habitats

On Earth, 3D printing can fabricate, layer by layer, thousands of things, from replacement hips to hammers to homes. These devices take raw materials, such as plastic, concrete or metal, and deposit it on a computerized programmed path to build a part. It’s often called “additive manufacturing,” because you keep adding material to make the part, rather than removing material, as is done in conventional machining.

Already, 3D printing in space is underway. On the International Space Station, astronauts use 3D printers to make tools and spare parts, such as ratchet wrenches, clamps and brackets. Depending on the part, printing time can take from around 30 minutes to several hours.

For now, the print materials are mostly hauled up from Earth. But NASA has also begun recycling some of those materials, such as waste plastic, to make new parts with the Refabricator, an advanced 3D printer installed in 2019.

Manufacturing in space

You may be wondering why space explorers can’t simply bring everything they need with them. After all, that’s how the International Space Station was built decades ago – by hauling tons of prefabricated components from Earth.

But that’s impractical for building habitats on other worlds. Launching materials into space is incredibly expensive. Right now, every pound launched aboard a rocket just to get to low Earth orbit costs thousands of dollars. To get materials to the Moon, NASA estimates the initial cost at around US$500,000 per pound.

Still, manufacturing things in space is a challenge. In the microgravity of space, or the reduced gravity of the Moon or Mars, materials behave differently than they do on Earth. Decrease or remove gravity, and materials cool and recrystallize differently. The Moon has one-sixth the gravity of Earth; Mars, about two-fifths. Engineers and scientists are working now to adapt 3D printers to function in these conditions.

An illustration of an astronaut looking at a base camp on Mars.
An artist’s impressions of what a Mars base camp might look like.
peepo/E+ via Getty Images

Using otherworldly soil

On alien worlds, rather than plastic or metal, 3D printers will use the natural resources found in these environments. But finding the right raw materials is not easy. Habitats on the Moon and Mars must protect astronauts from the lack of air, extreme temperatures, micrometeorite impacts and radiation.

Regolith, the fine, dusty, sandlike particles that cover both the lunar and Martian surfaces, could be a primary ingredient to make these dwellings. Think of the regolith on both worlds as alien dirt – unlike Earth soil, it contains few nutrients, and as far as we know, no living organisms. But it might be a good raw material for 3D printing.

My colleagues began researching this possibility by first examining how regular cement behaves in space. I am now joining them to develop techniques for turning regolith into a printable material and to eventually test these on the Moon.

But obtaining otherworldly regolith is a problem. The regolith samples returned from the Moon during the Apollo missions in the 1960s and 70s are precious, difficult if not impossible to access for research purposes. So scientists are using regolith simulants to test ideas. Actual regolith may react quite differently than our simulants. We just don’t know.

What’s more, the regolith on the Moon is very different from what’s found on Mars. Martian regolith contains iron oxide –that’s what gives it a reddish color – but Moon regolith is mostly silicates; it’s much finer and more angular. Researchers will need to learn how to use both types in a 3D printer.

YouTube video
See models of otherworldly habitats.

Applications on Earth

NASA’s Moon-to-Mars Planetary Autonomous Construction Technology program, also known as MMPACT, is advancing the technology needed to print these habitats on alien worlds.

Among the approaches scientists are now exploring: a regolith-based concrete made in part from surface ice; melting the regolith at high temperatures, and then using molds to form it while it’s a liquid; and sintering, which means heating the regolith with concentrated sunlight, lasers or microwaves to fuse particles together without the need for binders.

Along those lines, my colleagues and I developed a Martian concrete we call MarsCrete, a material we used to 3D-print a small test structure for NASA in 2017.

Then, in May 2019, using another type of special concrete, we 3D-printed a one-third scale prototype Mars habitat that could support everything astronauts would need for long-term survival, including living, sleeping, research and food-production modules.

That prototype showcased the potential, and the challenges, of building housing on the red planet. But many of these technologies will benefit people on Earth too.

In the same way astronauts will make sustainable products from natural resources, homebuilders could make concretes from binders and aggregates found locally, and maybe even from recycled construction debris. Engineers are already adapting the techniques that could print Martian habitats to address housing shortages here at home. Indeed, 3D-printed homes are already on the market.

Meanwhile, the move continues toward establishing a human presence outside the Earth. Artemis III, now scheduled for liftoff in 2027, will be the first human Moon landing since 1972. A NASA trip to Mars could happen as early as 2035.

But wherever people go, and whenever they get there, I’m certain that 3D printers will be one of the primary tools to let human beings live off alien land.The Conversation

Sven Bilén, Professor of Engineering Design, Electrical Engineering and Aerospace Engineering, Penn State

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post 3D printing will help space pioneers make homes, tools and other stuff they need to colonize the Moon and Mars appeared first on theconversation.com

Continue Reading

The Conversation

George Washington, a real estate investor and successful entrepreneur, knew the difference between running a business and running the government

Published

on

theconversation.com – Eliga Gould, Professor of History, University of New Hampshire – 2025-03-10 07:50:00

President George Washington delivers his first inaugural address in April 1789 in New York City.
Painting by T.H. Matteson, engraving by H.S. Sadd, via Library of Congress

Eliga Gould, University of New Hampshire

During his three presidential campaigns, Donald Trump promised to run the federal government as though it were a business. True to his word, upon retaking office, Trump put tech billionaire Elon Musk at the head of a new group in the executive branch called the Department of Government Efficiency.

DOGE, as Musk’s initiative is known, has so far fired, laid off or received resignations from tens of thousands of federal workers and says it has discovered large sums of wasted or fraudulently spent tax dollars. But even its questionable claim of saving US$65 billion is less than 1% of the $6.75 trillion the U.S. spent in the 2024 fiscal year, and a tiny fraction of the nation’s cumulative debt of $36 trillion. Because Musk’s operation has not been formalized by Congress, DOGE’s indiscriminate cuts also raise troubling constitutional questions and may be illegal.

Before they go too far trying to run the government like a business, Trump and his advisors may want to consider the very different example of the nation’s first chief executive while he was in office.

A man stands while behind him a man sits at a desk.
Elon Musk, left, and Donald Trump have undertaken an effort both describe as seeking to run government more like a business.
Andrew Harnik/Getty Images

The first businessman to become president

Like Trump, George Washington was a businessman with a large real estate portfolio. Along with property in Virginia and six other states, he had extensive claims to Indigenous land in the Ohio River Valley.

Partly because of those far-flung investments, the first president supported big transportation projects, took an active interest in the invention of the steamboat, and founded the Patowmack Company, a precursor to the builders of the Chesapeake and Ohio Canal.

Above all, Washington was a farmer. On his Mount Vernon estate, in northern Virginia, he grew tobacco and wheat and operated a gristmill. After his second term as president, he built a profitable distillery. At the time of his death, he owned nearly 8,000 acres of productive farm and woodland, almost four times his original inheritance.

Much of Washington’s wealth was based on slave labor. In his will, he freed 123 of the 300 enslaved African Americans who had made his successful business possible, but while he lived, he expected his workers to do as he said.

President Washington and Congress

If Washington the businessman and plantation owner was accustomed to being obeyed, he knew that being president was another matter.

In early 1790, near the end of his first year in office, he reflected on the difference in a letter to the English historian Catharine Macaulay. Macaulay had visited Mount Vernon several years before. She was eager to hear the president’s thoughts about what, in his reply, he described as “the last great experiment for promoting human happiness by reasonable compact.”

The new government, Washington wrote, was “a government of accommodation as well as a government of laws.”

As head of the executive branch, his own powers were limited. In the months since the inauguration, he had learned that “much was to be done by prudence, much by conciliation, much by firmness. Few, who are not philosophical Spectators,” he told his friend, “can realise the difficult and delicate part which a man in my situation (has) to act.”

Although Washington did not say why his situation was delicate, he didn’t need to. Congress, as everyone knew, was the most powerful branch of government, not the president.

The previous spring, Congress had shown just how powerful it was when it debated whether the president, who needed Senate confirmation to appoint heads of executive departments, could remove such officers without the same body’s approval. In the so-called Decision of 1789, Congress determined that the president did have that power, but only after Vice President John Adams broke the deadlock in the upper house.

The meaning of Congress’ vote was clear. On matters where the Constitution is ambiguous, Congress would decide what powers the president can legally exercise and what powers he – or, someday, she – cannot.

When it created a “sinking fund” in 1790 to manage the national debt, Congress showed just how far it could constrain presidential power.

Although the fund was part of the Treasury Department, whose secretary served at the president’s pleasure, the commission that oversaw it served for fixed terms set by Congress. The president could neither remove them nor tell them what to do.

Inefficient efficiency

William Humphrey, a member of the Federal Trade Commission, was unconstitutionally fired by Franklin Roosevelt in 1933.
Library of Congress

By limiting Washington’s power over the Sinking Fund Commission, Congress set a precedent that still holds, notably in the 1935 Supreme Court case of Humphrey’s Executor v. U.S.

To the displeasure of those, including Trump, who promote the novel “unitary executive” theory of an all-powerful president, the court ruled that President Franklin D. Roosevelt could not dismiss a member of the Federal Trade Commission before his term was up – even if, as Roosevelt said, his administration’s goals would be “carried out most effectively with personnel of my own selection.”

Like the businessman who currently occupies the White House, Washington did not always like having to share power with Congress. Its members were headstrong and independent-minded. They rarely did what they were told.

But he realized working with Congress was the only way to create a federal government that really was efficient, with each branch carrying out its defined powers, as the founders intended. Because of the Constitution’s checks and balances, the United States was – and is – a government based on compromise between the three branches. No one, not even the president, is exempt.

To his credit, Washington was quick to learn that lesson.The Conversation

Eliga Gould, Professor of History, University of New Hampshire

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post George Washington, a real estate investor and successful entrepreneur, knew the difference between running a business and running the government appeared first on theconversation.com

Continue Reading

Trending