Connect with us

The Conversation

How AI could take over elections – and undermine democracy

Published

on

An AI-driven political campaign could be all things to all people. Eric Smalley, TCUS; Biodiversity Heritage Library/Flickr; Taymaz Valley/Flickr, CC BY-ND

Could organizations use artificial intelligence language models such as ChatGPT to induce voters to behave in specific ways?

Sen. Josh Hawley asked OpenAI CEO Sam Altman this question in a May 16, 2023, U.S. Senate hearing on artificial intelligence. Altman replied that he was indeed concerned that some people might use language models to manipulate, persuade and engage in one-on-one interactions with voters.

Altman did not elaborate, but he might have had something like this scenario in mind. Imagine that soon, political technologists develop a machine called Clogger – a political campaign in a black box. Clogger relentlessly pursues just one objective: to maximize the chances that its candidate – the campaign that buys the services of Clogger Inc. – prevails in an election.

While platforms like Facebook, Twitter and YouTube use forms of AI to get users to spend more time on their sites, Clogger’s AI would have a different objective: to change people’s voting behavior.

How Clogger would work

As a political scientist and a legal scholar who study the intersection of technology and democracy, we believe that something like Clogger could use automation to dramatically increase the scale and potentially the effectiveness of behavior manipulation and microtargeting techniques that political campaigns have used since the early 2000s. Just as advertisers use your browsing and social media history to individually target commercial and political ads now, Clogger would pay attention to you – and hundreds of millions of other voters – individually.

It would offer three advances over the current state-of-the-art algorithmic behavior manipulation. First, its language model would generate messages — texts, social media and email, perhaps including images and videos — tailored to you personally. Whereas advertisers strategically place a relatively small number of ads, language models such as ChatGPT can generate countless unique messages for you personally – and millions for others – over the course of a campaign.

Second, Clogger would use a technique called reinforcement learning to generate a succession of messages that become increasingly more likely to change your vote. Reinforcement learning is a machine-learning, trial-and-error approach in which the computer takes actions and gets feedback about which work better in order to learn how to accomplish an objective. Machines that can play Go, Chess and many video games better than any human have used reinforcement learning.

How reinforcement learning works.

Third, over the course of a campaign, Clogger’s messages could evolve in order to take into account your responses to the machine’s prior dispatches and what it has learned about changing others’ minds. Clogger would be able to carry on dynamic “conversations” with you – and millions of other people – over time. Clogger’s messages would be similar to ads that follow you across different websites and social media.

The nature of AI

Three more features – or bugs – are worth noting.

First, the messages that Clogger sends may or may not be political in content. The machine’s only goal is to maximize vote share, and it would likely devise strategies for achieving this goal that no human campaigner would have thought of.

One possibility is sending likely opponent voters information about nonpolitical passions that they have in sports or entertainment to bury the political messaging they receive. Another possibility is sending off-putting messages – for example incontinence advertisements – timed to coincide with opponents’ messaging. And another is manipulating voters’ social media friend groups to give the sense that their social circles support its candidate.

Second, Clogger has no regard for truth. Indeed, it has no way of knowing what is true or false. Language model “hallucinations” are not a problem for this machine because its objective is to change your vote, not to provide accurate information.

Third, because it is a black box type of artificial intelligence, people would have no way to know what strategies it uses.

The field of explainable AI aims to open the black box of many machine-learning models so people can understand how they work.

Clogocracy

If the Republican presidential campaign were to deploy Clogger in 2024, the Democratic campaign would likely be compelled to respond in kind, perhaps with a similar machine. Call it Dogger. If the campaign managers thought that these machines were effective, the presidential contest might well come down to Clogger vs. Dogger, and the winner would be the client of the more effective machine.

Political scientists and pundits would have much to say about why one or the other AI prevailed, but likely no one would really know. The president will have been elected not because his or her policy proposals or political ideas persuaded more Americans, but because he or she had the more effective AI. The content that won the day would have come from an AI focused solely on victory, with no political ideas of its own, rather than from candidates or parties.

In this very important sense, a machine would have won the election rather than a person. The election would no longer be democratic, even though all of the ordinary activities of democracy – the speeches, the ads, the messages, the voting and the counting of votes – will have occurred.

The AI-elected president could then go one of two ways. He or she could use the mantle of election to pursue Republican or Democratic party policies. But because the party ideas may have had little to do with why people voted the way that they did – Clogger and Dogger don’t care about policy views – the president’s actions would not necessarily reflect the will of the voters. Voters would have been manipulated by the AI rather than freely choosing their political leaders and policies.

Another path is for the president to pursue the messages, behaviors and policies that the machine predicts will maximize the chances of reelection. On this path, the president would have no particular platform or agenda beyond maintaining power. The president’s actions, guided by Clogger, would be those most likely to manipulate voters rather than serve their genuine interests or even the president’s own ideology.

Avoiding Clogocracy

It would be possible to avoid AI election manipulation if candidates, campaigns and consultants all forswore the use of such political AI. We believe that is unlikely. If politically effective black boxes were developed, the temptation to use them would be almost irresistible. Indeed, political consultants might well see using these tools as required by their professional responsibility to help their candidates win. And once one candidate uses such an effective tool, the opponents could hardly be expected to resist by disarming unilaterally.

Enhanced privacy protection would help. Clogger would depend on access to vast amounts of personal data in order to target individuals, craft messages tailored to persuade or manipulate them, and track and retarget them over the course of a campaign. Every bit of that information that companies or policymakers deny the machine would make it less effective.

Strong data privacy laws could help steer AI away from being manipulative.

Another solution lies with elections commissions. They could try to ban or severely regulate these machines. There’s a fierce debate about whether such “replicant” speech, even if it’s political in nature, can be regulated. The U.S.’s extreme free speech tradition leads many leading academics to say it cannot.

But there is no reason to automatically extend the First Amendment’s protection to the product of these machines. The nation might well choose to give machines rights, but that should be a decision grounded in the challenges of today, not the misplaced assumption that James Madison’s views in 1789 were intended to apply to AI.

European Union regulators are moving in this direction. Policymakers revised the European Parliament’s draft of its Artificial Intelligence Act to designate “AI systems to influence voters in campaigns” as “high risk” and subject to regulatory scrutiny.

One constitutionally safer, if smaller, step, already adopted in part by European internet regulators and in California, is to prohibit bots from passing themselves off as people. For example, regulation might require that campaign messages come with disclaimers when the content they contain is generated by machines rather than humans.

This would be like the advertising disclaimer requirements – “Paid for by the Sam Jones for Congress Committee” – but modified to reflect its AI origin: “This AI-generated ad was paid for by the Sam Jones for Congress Committee.” A stronger version could require: “This AI-generated message is being sent to you by the Sam Jones for Congress Committee because Clogger has predicted that doing so will increase your chances of voting for Sam Jones by 0.0002%.” At the very least, we believe voters deserve to know when it is a bot speaking to them, and they should know why, as well.

The possibility of a system like Clogger shows that the path toward human collective disempowerment may not require some superhuman artificial general intelligence. It might just require overeager campaigners and consultants who have powerful new tools that can effectively push millions of people’s many buttons.

Learn what you need to know about artificial intelligence by signing up for our newsletter series of four emails delivered over the course of a week. You can read all our stories on generative AI at TheConversation.com.

Archon Fung consults for Apple University.

Lawrence Lessig does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

———-
Read More

By: Archon Fung, Professor of Citizenship and Self-Government, Harvard Kennedy School
Title: How AI could take over elections – and undermine democracy
Sourced From: theconversation.com/how-ai-could-take-over-elections-and-undermine-democracy-206051
Published Date: Fri, 02 Jun 2023 13:42:24 +0000

The Conversation

Wildfire smoke’s health risks can linger long-term in homes that escape burning

Published

on

theconversation.com – Colleen E. Reid, Associate Professor of Geography, University of Colorado Boulder – 2024-12-23 11:00:00

The Marshall Fire spared some homes, shown here a day later, but smoke had blanketed the area.

Andy Cross/MediaNews Group/The Denver Post via Getty Images

Colleen E. Reid, University of Colorado Boulder

Three years ago, on Dec. 30, 2021, a wind-driven wildfire raced through two communities just outside Boulder, Colorado. In the span of about eight hours, more than 1,000 homes and businesses burned.

The fire left entire blocks in ash, but among them, pockets of houses survived, seemingly untouched. The owners of these homes may have felt relief at first. But fire damage can be deceiving, as many soon discovered.

When wildfires like the Marshall Fire reach the wildland-urban interface, they are burning both vegetation and human-made materials. Vehicles and buildings burn, along with all of the things inside them – electronics, paint, plastics, furniture.

Research shows that when human-made materials like these burn, the chemicals released are different from what is emitted when just vegetation burns. The smoke and ash can blow under doors and around windows in nearby homes, bringing in chemicals that stick to walls and other indoor surfaces and continue off-gassing for weeks to months, particularly in warmer temperatures.

An aerial view of burned neighborhoods with a few houses standing among burned lots and at the edges of the fire area.

The Marshall Fire swept through several neighborhoods in the towns of Louisville and Superior, Colo. In the homes that were left standing, residents dealt with lingering smoke and ash in their homes.

Michael Ciaglo/Getty Images

In a new study, my colleagues and I looked at the health effects people experienced when they returned to still-standing homes after the Marshall Fire. We also created a checklist for people to use after urban wildfires in the future to help them protect their health and reduce their risks when they return to smoke-damaged homes.

Tests in homes found elevated metals and VOCs

In the days after the Marshall Fire, residents quickly reached out to nearby scientists who study wildfire smoke and health risks at the University of Colorado Boulder and area labs. People wanted to know what was in the ash and causing the lingering smells inside their homes.

In homes we were able to test, my colleagues found elevated levels of metals and PAHs – polycyclic aromatic hydrocarbons – in the ash. We also found elevated VOCs – volatile organic compounds – in airborne samples. Some VOCs, such as dioxins, benzene, formaldehyde and PAHs, can be toxic to humans. Benzene is a known carcinogen.

People wanted to know whether the chemicals that got into their homes that day could harm their health.

At the time, we could find no information about physical health implications for people who have returned to smoke-damaged homes after a wildfire. To look for patterns, we surveyed residents affected by the fire six months, one year and two years afterward.

Symptoms 6 months after the fire

Even six months after the fire, we found that many people were reporting symptoms that aligned with health risks related to smoke and ash from fires.

More than half (55%) of the people who responded to our survey reported that they were experiencing at least one symptom six months after the blaze that they attributed to the Marshall Fire. The most common symptoms reported were itchy or watery eyes (33%), headache (30%), dry cough (27%), sneezing (26%) and sore throat (23%).

All of these symptoms, as well as having a strange taste in one’s mouth, were associated with people reporting that their home smelled differently when they returned to it one week after the fire.

Many survey respondents said that the smells decreased over time. Most attributed the improvement in smell to the passage of time, cleaning surfaces and air ducts, replacing furnace filters, and removing carpet, textiles and furniture from the home. Despite this, many still had symptoms.

We found that living near a large number of burned structures was associated with these health symptoms. For every 10 additional destroyed buildings within 820 feet (250 meters) of a person’s home, there was a 21% increase in headaches and a 26% increase in having a strange taste in their mouth.

These symptoms align with what could be expected from exposure to the chemicals that we found in the ash and measured in the air inside the few smoke-damaged homes that we were able to study in depth.

Lingering symptoms and questions

There are a still a lot of unanswered questions about the health risks from smoke- and ash-damaged homes.

For example, we don’t yet know what long-term health implications might look like for people living with lingering gases from wildfire smoke and ash in a home.

We found a significant decline in the number of people reporting symptoms one year after the fire. However, 33% percent of the people whose homes were affected still reported at least one symptom that they attributed to the fire. About the same percentage also reported at least one symptom two years after the fire.

We also could not measure the level of VOCs or metals that each person was exposed to. But we do think that reports of a change in the smell of a person’s home one week after the fire demonstrates the likely presence of VOCs in the home. That has health implications for people whose homes are exposed to smoke or ash from a wildfire.

Tips to protect yourself after future wildfires

Wildfires are increasingly burning homes and other structures as more people move into the wildland-urban interface, temperatures rise and fire seasons lengthen.

It can be confusing to know what to do if your home is one that survives a wildfire nearby. To help, my colleagues and I put together a website of steps to take if your home is ever infiltrated by smoke or ash from a wildfire.

Here are a few of those steps:

  • When you’re ready to clean your home, start by protecting yourself. Wear at least an N95 (or KN95) mask and gloves, goggles and clothing that covers your skin.

  • Vacuum floors, drapes and furniture. But avoid harsh chemical cleaners because they can react with the chemicals in the ash.

  • Clean your HVAC filter and ducts to avoid spreading ash further. Portable air cleaners with carbon filters can help remove VOCs.

A recent scientific study documents how cleaning all surfaces within a home can reduce reservoirs of VOCs and lower indoor air concentrations of VOCs.

Given that we don’t know much yet about the health harms of smoke- and ash-damaged homes, it is important to take care in how you clean so you can do the most to protect your health.The Conversation

Colleen E. Reid, Associate Professor of Geography, University of Colorado Boulder

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Wildfire smoke’s health risks can linger long-term in homes that escape burning appeared first on theconversation.com

Continue Reading

The Conversation

In Disney’s ‘Moana,’ the characters navigate using the stars, just like real Polynesian explorers − an astronomer explains how these methods work

Published

on

theconversation.com – Christopher Palma, Teaching Professor, Department of Astronomy & Astrophysics, Penn State – 2024-12-20 07:17:00

Wayfarers around the world have used the stars to navigate the sea.
Wirestock/iStock via Getty Images Plus

Christopher Palma, Penn State

If you have visited an island like one of the Hawaiian Islands, Tahiti or Easter Island, also known as Rapa Nui, you may have noticed how small these land masses appear against the vast Pacific Ocean. If you’re on Hawaii, the nearest island to you is more than 1,000 miles (1,600 kilometers) away, and the coast of the continental United States is more than 2,000 miles (3,200 kilometers) away. To say these islands are secluded is an understatement.

For me, watching the movie “Moana” in 2016 was eye-opening. I knew that Polynesian people traveled between a number of Pacific islands, but seeing Moana set sail on a canoe made me realize exactly how small those boats are compared with what must have seemed like an endless ocean. Yet our fictional hero went on this journey anyway, like the countless real-life Polynesian voyagers upon which she is based.

Oceania as shown from the ISS
Islands in Polynesia can be thousands of miles apart.
NASA

As an astronomer, I have been teaching college students and visitors to our planetarium how to find stars in our sky for more than 20 years. As part of teaching appreciation for the beauty of the sky and the stars, I want to help people understand that if you know the stars well, you can never get lost.

U.S. Navy veterans learned the stars in their navigation courses, and European cultures used the stars to navigate, but the techniques of Polynesian wayfinding shown in Moana brought these ideas to a very wide audience.

The movie Moana gave me a new hook – pun not intended – for my planetarium shows and lessons on how to locate objects in the night sky. With “Moana 2” out now, I am excited to see even more astronomy on the big screen and to figure out how I can build new lessons using the ideas in the movie.

The North Star

Have you ever found the North Star, Polaris, in your sky? I try to spot it every time I am out observing, and I teach visitors at my shows to use the “pointer stars” in the bowl of the Big Dipper to find it. These two stars in the Big Dipper point you directly to Polaris.

If you are facing Polaris, then you know you are facing north. Polaris is special because it is almost directly above Earth’s North Pole, and so everyone north of the equator can see it year-round in exactly the same spot in their sky.

It’s a key star for navigation because if you measure its height above your horizon, that tells you how far you are north of Earth’s equator. For the large number of people who live near 40 degrees north of the equator, you will see Polaris about 40 degrees above your horizon.

If you live in northern Canada, Polaris will appear higher in your sky, and if you live closer to the equator, Polaris will appear closer to the horizon. The other stars and constellations come and go with the seasons, though, so what you see opposite Polaris in the sky will change every month.

Look for the Big Dipper to find the North Star, Polaris.

You can use all of the stars to navigate, but to do that you need to know where to find them on every night of the year and at every hour of the night. So, navigating with stars other than Polaris is more complicated to learn.

Maui’s fishhook

At the end of June, around 11 p.m., a bright red star might catch your eye if you look directly opposite from Polaris. This is the star Antares, and it is the brightest star in the constellation Scorpius, the Scorpion.

If you are a “Moana” fan like me and the others in my family, though, you may know this group of stars by a different name – Maui’s fishhook.

If you are in the Northern Hemisphere, Scorpius may not fully appear above your horizon, but if you are on a Polynesian island, you should see all of the constellation rising in the southeast, hitting its highest point in the sky when it is due south, and setting in the southwest.

Astronomers and navigators can measure latitude using the height of the stars, which Maui and Moana did in the movie using their hands as measuring tools.

The easiest way to do this is to figure out how high Polaris is above your horizon. If you can’t see it at all, you must be south of the equator, but if you see Polaris 5 degrees (the width of three fingers at arm’s length) or 10 degrees above your horizon (the width of your full fist held at arm’s length), then you are 5 degrees or 10 degrees north of the equator.

The other stars, like those in Maui’s fishhook, will appear to rise, set and hit their highest point at different locations in the sky depending on where you are on the Earth.

Polynesian navigators memorized where these stars would appear in the sky from the different islands they sailed between, and so by looking for those stars in the sky at night, they could determine which direction to sail and for how long to travel across the ocean.

Today, most people just pull out their phones and use the built-in GPS as a guide. Ever since “Moana” was in theaters, I see a completely different reaction to my planetarium talks about using the stars for navigation. By accurately showing how Polynesian navigators used the stars to sail across the ocean, Moana helps even those of us who have never sailed at night to understand the methods of celestial navigation.

The first “Moana” movie came out when my son was 3 years old, and he took an instant liking to the songs, the story and the scenery. There are many jokes about parents who dread having to watch a child’s favorite over and over again, but in my case, I fell in love with the movie too.

Since then, I have wanted to thank the storytellers who made this movie for being so careful to show the astronomy of navigation correctly. I also appreciated that they showed how Polynesian voyagers used the stars and other clues, such as ocean currents, to sail across the huge Pacific Ocean and land safely on a very small island thousands of miles from their home.The Conversation

Christopher Palma, Teaching Professor, Department of Astronomy & Astrophysics, Penn State

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post In Disney’s ‘Moana,’ the characters navigate using the stars, just like real Polynesian explorers − an astronomer explains how these methods work appeared first on theconversation.com

Continue Reading

The Conversation

Listening for the right radio signals could be an effective way to track small drones

Published

on

theconversation.com – Iain Boyd, Director of the Center for National Security Initiatives and Professor of Aerospace Engineering Sciences, University of Colorado Boulder – 2024-12-17 17:28:00

Small drones can be hard to track at night.
Kevin Carter/Getty Images

Iain Boyd, University of Colorado Boulder

The recent spate of unidentified drone sightings in the U.S., including some near sensitive locations such as airports and military installations, has caused significant public concern.

Some of this recent increase in activity may be related to a September 2023 change in U.S. Federal Aviation Administration regulations that now allow drone operators to fly at night. But most of the sightings are likely airplanes or helicopters rather than drones.

The inability of the U.S. government to definitively identify the aircraft in the recent incidents, however, has some people wondering, why can’t they?

I am an engineer who studies defense systems. I see radio frequency sensors as a promising approach to detecting, tracking and identifying drones, not least because drone detectors based on the technology are already available. But I also see challenges to using the detectors to comprehensively spot drones flying over American communities.

How drones are controlled

Operators communicate with drones from a distance using radio frequency signals. Radio frequency signals are widely used in everyday life such as in garage door openers, car key fobs and, of course, radios. Because the radio spectrum is used for so many different purposes, it is carefully regulated by the Federal Communications Commission.

Drone communications are only allowed in narrow bands around specific frequencies such as at 5 gigahertz. Each make and model of a drone uses unique communication protocols coded within the radio frequency signals to interpret instructions from an operator and to send data back to them. In this way, a drone pilot can instruct the drone to execute a flight maneuver, and the drone can inform the pilot where it is and how fast it is flying.

Identifying drones by radio signals

Radio frequency sensors can listen in to the well-known drone frequencies to detect communication protocols that are specific to each particular drone model. In a sense, these radio frequency signals represent a unique fingerprint of each type of drone.

In the best-case scenario, authorities can use the radio frequency signals to determine the drone’s location, range, speed and flight direction. These radio frequency devices are called passive sensors because they simply listen out for and receive signals without taking any active steps. The typical range limit for detecting signals is about 3 miles (4.8 kilometers) from the source.

These sensors do not represent advanced technology, and they are readily available. So, why haven’t authorities made wider use of them?

Drones were all the buzz in the Northeast at the end of 2024.

Challenges to using radio frequency sensors

While the monitoring of radio frequency signals is a promising approach to detecting and identifying drones, there are several challenges to doing so.

First, it’s only possible for a sensor to obtain detailed information on drones that the sensor knows the communication protocols for. Getting sensors that can detect a wide range of drones will require coordination between all drone manufacturers and some central registration entity.

In the absence of information that makes it possible to decode the radio frequency signals, all that can be inferred about a drone is a rough idea of its location and direction. This situation can be improved by deploying multiple sensors and coordinating their information.

Second, the detection approach works best in “quiet” radio frequency environments where there are no buildings, machinery or people. It’s not easy to confidently attribute the unique source of a radio frequency signal in urban settings and other cluttered environments. Radio frequency signals bounce off all solid surfaces, making it difficult to be sure where the original signal came from. Again, the use of multiple sensors around a particular location, and careful placement of those sensors, can help to alleviate this issue.

Third, a major part of the concern over the inability to detect and identify drones is that they may be operated by criminals or terrorists. If drone operators with malicious intent know that an area targeted for a drone operation is being monitored by radio frequency sensors, they may develop effective countermeasures. For example, they may use signal frequencies that lie outside the FCC-regulated parameters, and communication protocols that have not been registered. An even more effective countermeasure is to preprogram the flight path of a drone to completely avoid the use of any radio frequency communications between the operator and the drone.

Finally, widespread deployment of radio frequency sensors for tracking drones would be logistically complicated and financially expensive. There are likely thousands of locations in the U.S. alone that might require protection from hostile drone attacks. The cost of deploying a fully effective drone detection system would be significant.

There are other means of detecting drones, including radar systems and networks of acoustic sensors, which listen for the unique sounds drones generate. But radar systems are relatively expensive, and acoustic drone detection is a new technology.

The way forward

It was almost guaranteed that at some point the problem of unidentified drones would arise. People are operating drones more and more in regions of the airspace that have previously been very sparsely populated.

Perhaps the recent concerns over drone sightings are a wake-up call. The airspace is only going to become much more congested in the coming years as more consumers buy drones, drones are used for more commercial purposes, and air-taxis come into use. There’s only so much that drone detection technologies can do, and it might become necessary for the FAA to tighten regulation of the nation’s airspace by, for example, requiring drone operators to submit detailed flight plans.

In the meantime, don’t be too quick to assume those blinking lights you see in the night sky are drones.The Conversation

Iain Boyd, Director of the Center for National Security Initiatives and Professor of Aerospace Engineering Sciences, University of Colorado Boulder

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Listening for the right radio signals could be an effective way to track small drones appeared first on theconversation.com

Continue Reading

Trending