Connect with us

The Conversation

Fake papers are contaminating the world’s scientific literature, fueling a corrupt industry and slowing legitimate lifesaving medical research

Published

on

theconversation.com – Frederik Joelving, Contributing editor, Retraction Watch – 2025-01-29 07:53:00

Fake papers are contaminating the world’s scientific literature, fueling a corrupt industry and slowing legitimate lifesaving medical research

Assistant professor Frank Cackowski, left, and researcher Steven Zielske at Wayne State University in Detroit became suspicious of a paper on cancer research that was eventually retracted.

Amy Sacka, CC BY-ND

Frederik Joelving, Retraction Watch; Cyril Labbé, Université Grenoble Alpes (UGA), and Guillaume Cabanac, Institut de Recherche en Informatique de Toulouse

Over the past decade, furtive commercial entities around the world have industrialized the production, sale and dissemination of bogus scholarly research, undermining the literature that everyone from doctors to engineers rely on to make decisions about human lives.

It is exceedingly difficult to get a handle on exactly how big the problem is. Around 55,000 scholarly papers have been retracted to date, for a variety of reasons, but scientists and companies who screen the scientific literature for telltale signs of fraud estimate that there are many more fake papers circulating – possibly as many as several hundred thousand. This fake research can confound legitimate researchers who must wade through dense equations, evidence, images and methodologies only to find that they were made up.

Even when the bogus papers are spotted – usually by amateur sleuths on their own time – academic journals are often slow to retract the papers, allowing the articles to taint what many consider sacrosanct: the vast global library of scholarly work that introduces new ideas, reviews other research and discusses findings.

These fake papers are slowing down research that has helped millions of people with lifesaving medicine and therapies from cancer to COVID-19. Analysts’ data shows that fields related to cancer and medicine are particularly hard hit, while areas like philosophy and art are less affected. Some scientists have abandoned their life’s work because they cannot keep pace given the number of fake papers they must bat down.

The problem reflects a worldwide commodification of science. Universities, and their research funders, have long used regular publication in academic journals as requirements for promotions and job security, spawning the mantra “publish or perish.”

But now, fraudsters have infiltrated the academic publishing industry to prioritize profits over scholarship. Equipped with technological prowess, agility and vast networks of corrupt researchers, they are churning out papers on everything from obscure genes to artificial intelligence in medicine.

These papers are absorbed into the worldwide library of research faster than they can be weeded out. About 119,000 scholarly journal articles and conference papers are published globally every week, or more than 6 million a year. Publishers estimate that, at most journals, about 2% of the papers submitted – but not necessarily published – are likely fake, although this number can be much higher at some publications.

While no country is immune to this practice, it is particularly pronounced in emerging economies where resources to do bona fide science are limited – and where governments, eager to compete on a global scale, push particularly strong “publish or perish” incentives.

As a result, there is a bustling online underground economy for all things scholarly publishing. Authorship, citations, even academic journal editors, are up for sale. This fraud is so prevalent that it has its own name: paper mills, a phrase that harks back to “term-paper mills”, where students cheat by getting someone else to write a class paper for them.

The impact on publishers is profound. In high-profile cases, fake articles can hurt a journal’s bottom line. Important scientific indexes – databases of academic publications that many researchers rely on to do their work – may delist journals that publish too many compromised papers. There is growing criticism that legitimate publishers could do more to track and blacklist journals and authors who regularly publish fake papers that are sometimes little more than artificial intelligence-generated phrases strung together.

To better understand the scope, ramifications and potential solutions of this metastasizing assault on science, we – a contributing editor at Retraction Watch, a website that reports on retractions of scientific papers and related topics, and two computer scientists at France’s Université Toulouse III–Paul Sabatier and Université Grenoble Alpes who specialize in detecting bogus publications – spent six months investigating paper mills.

This included, by some of us at different times, trawling websites and social media posts, interviewing publishers, editors, research-integrity experts, scientists, doctors, sociologists and scientific sleuths engaged in the Sisyphean task of cleaning up the literature. It also involved, by some of us, screening scientific articles looking for signs of fakery.

Problematic Paper Screener: Trawling for fraud in the scientific literature

What emerged is a deep-rooted crisis that has many researchers and policymakers calling for a new way for universities and many governments to evaluate and reward academics and health professionals across the globe.

Just as highly biased websites dressed up to look like objective reporting are gnawing away at evidence-based journalism and threatening elections, fake science is grinding down the knowledge base on which modern society rests.

As part of our work detecting these bogus publications, co-author Guillaume Cabanac developed the Problematic Paper Screener, which filters 130 million new and old scholarly papers every week looking for nine types of clues that a paper might be fake or contain errors. A key clue is a tortured phrase – an awkward wording generated by software that replaces common scientific terms with synonyms to avoid direct plagiarism from a legitimate paper.

Problematic Paper Screener: Trawling for fraud in the scientific literature

An obscure molecule

Frank Cackowski at Detroit’s Wayne State University was confused.

The oncologist was studying a sequence of chemical reactions in cells to see if they could be a target for drugs against prostate cancer. A paper from 2018 from 2018 in the American Journal of Cancer Research piqued his interest when he read that a little-known molecule called SNHG1 might interact with the chemical reactions he was exploring. He and fellow Wayne State researcher Steven Zielske began a series of experiments to learn more about the link. Surprisingly, they found there wasn’t a link.

Meanwhile, Zielske had grown suspicious of the paper. Two graphs showing results for different cell lines were identical, he noticed, which “would be like pouring water into two glasses with your eyes closed and the levels coming out exactly the same.” Another graph and a table in the article also inexplicably contained identical data.

Zielske described his misgivings in an anonymous post in 2020 at PubPeer, an online forum where many scientists report potential research misconduct, and also contacted the journal’s editor. Shortly thereafter, the journal pulled the paper, citing “falsified materials and/or data.”

“Science is hard enough as it is if people are actually being genuine and trying to do real work,” says Cackowski, who also works at the Karmanos Cancer Institute in Michigan. “And it’s just really frustrating to waste your time based on somebody’s fraudulent publications.”

Two men sitting  across from each other at a table filled with papers

Wayne State scientists Frank Cackowski and Steven Zielske carried out experiments based on a paper they later found to contain false data.

Amy Sacka, CC BY-ND

He worries that the bogus publications are slowing down “legitimate research that down the road is going to impact patient care and drug development.”

The two researchers eventually found that SNHG1 did appear to play a part in prostate cancer, though not in the way the suspect paper suggested. But it was a tough topic to study. Zielske combed through all the studies on SNHG1 and cancer – some 150 papers, nearly all from Chinese hospitals – and concluded that “a majority” of them looked fake. Some reported using experimental reagents known as primers that were “just gibberish,” for instance, or targeted a different gene than what the study said, according to Zielske. He contacted several of the journals, he said, but received little response. “I just stopped following up.”

The many questionable articles also made it harder to get funding, Zielske said. The first time he submitted a grant application to study SNHG1, it was rejected, with one reviewer saying “the field was crowded,” Zielske recalled. The following year, he explained in his application how most of the literature likely came from paper mills. He got the grant.

Today, Zielske said, he approaches new research differently than he used to: “You can’t just read an abstract and have any faith in it. I kind of assume everything’s wrong.”

Legitimate academic journals evaluate papers before they are published by having other researchers in the field carefully read them over. This peer review process is designed to stop flawed research from being disseminated, but is far from perfect.

Reviewers volunteer their time, typically assume research is real and so don’t look for signs of fraud. And some publishers may try to pick reviewers they deem more likely to accept papers, because rejecting a manuscript can mean losing out on thousands of dollars in publication fees.

“Even good, honest reviewers have become apathetic” because of “the volume of poor research coming through the system,” said Adam Day, who directs Clear Skies, a company in London that develops data-based methods to help spot falsified papers and academic journals. “Any editor can recount seeing reports where it’s obvious the reviewer hasn’t read the paper.”

With AI, they don’t have to: New research shows that many reviews are now written by ChatGPT and similar tools.

To expedite the publication of one another’s work, some corrupt scientists form peer review rings. Paper mills may even create fake peer reviewers impersonating real scientists to ensure their manuscripts make it through to publication. Others bribe editors or plant agents on journal editorial boards.

María de los Ángeles Oviedo-García, a professor of marketing at the University of Seville in Spain, spends her spare time hunting for suspect peer reviews from all areas of science, hundreds of which she has flagged on PubPeer. Some of these reviews are the length of a tweet, others ask authors to cite the reviewer’s work even if it has nothing to do with the science at hand, and many closely resemble other peer reviews for very different studies – evidence, in her eyes, of what she calls “review mills.”

Screenshot showing highlighted reports

PubPeer comment from María de los Ángeles Oviedo-García pointing out that a peer review report is very similar to two other reports. She also points out that authors and citations for all three are either anonymous or the same person – both hallmarks of fake papers.

Screen capture by The Conversation, CC BY-ND

“One of the demanding fights for me is to keep faith in science,” says Oviedo-García, who tells her students to look up papers on PubPeer before relying on them too heavily. Her research has been slowed down, she adds, because she now feels compelled to look for peer review reports for studies she uses in her work. Often there aren’t any, because “very few journals publish those review reports,” Oviedo-García says.

An ‘absolutely huge’ problem

It is unclear when paper mills began to operate at scale. The earliest article retracted due to suspected involvement of such agencies was published in 2004, according to the Retraction Watch Database, which contains details about tens of thousands of retractions. (The database is operated by The Center for Scientific Integrity, the parent nonprofit of Retraction Watch.) Nor is it clear exactly how many low-quality, plagiarized or made-up articles paper mills have spawned.

But the number is likely to be significant and growing, experts say. One Russia-linked paper mill in Latvia, for instance, claims on its website to have published “more than 12,650 articles” since 2012.

An analysis of 53,000 papers submitted to six publishers – but not necessarily published – found the proportion of suspect papers ranged from 2% to 46% across journals. And the American publisher Wiley, which has retracted more than 11,300 compromised articles and closed 19 heavily affected journals in its erstwhile Hindawi division, recently said its new paper-mill detection tool flags up to 1 in 7 submissions.

Day, of Clear Skies, estimates that as many as 2% of the several million scientific works published in 2022 were milled. Some fields are more problematic than others. The number is closer to 3% in biology and medicine, and in some subfields, like cancer, it may be much larger, according to Day. Despite increased awareness today, “I do not see any significant change in the trend,” he said. With improved methods of detection, “any estimate I put out now will be higher.”

The paper-mill problem is “absolutely huge,” said Sabina Alam, director of Publishing Ethics and Integrity at Taylor & Francis, a major academic publisher. In 2019, none of the 175 ethics cases that editors escalated to her team was about paper mills, Alam said. Ethics cases include submissions and already published papers. In 2023, “we had almost 4,000 cases,” she said. “And half of those were paper mills.”

Jennifer Byrne, an Australian scientist who now heads up a research group to improve the reliability of medical research, submitted testimony for a hearing of the U.S. House of Representatives’ Committee on Science, Space, and Technology in July 2022. She noted that 700, or nearly 6%, of 12,000 cancer research papers screened had errors that could signal paper mill involvement. Byrne shuttered her cancer research lab in 2017 because the genes she had spent two decades researching and writing about became the target of an enormous number of fake papers. A rogue scientist fudging data is one thing, she said, but a paper mill could churn out dozens of fake studies in the time it took her team to publish a single legitimate one.

“The threat of paper mills to scientific publishing and integrity has no parallel over my 30-year scientific career …. In the field of human gene science alone, the number of potentially fraudulent articles could exceed 100,000 original papers,” she wrote to lawmakers, adding, “This estimate may seem shocking but is likely to be conservative.”

In one area of genetics research – the study of noncoding RNA in different types of cancer – “We’re talking about more than 50% of papers published are from mills,” Byrne said. “It’s like swimming in garbage.”

In 2022, Byrne and colleagues, including two of us, found that suspect genetics research, despite not having an immediate impact on patient care, still informs the work of other scientists, including those running clinical trials. Publishers, however, are often slow to retract tainted papers, even when alerted to obvious signs of fraud. We found that 97% of the 712 problematic genetics research articles we identified remained uncorrected within the literature.

When retractions do happen, it is often thanks to the efforts of a small international community of amateur sleuths like Oviedo-García and those who post on PubPeer.

Jillian Goldfarb, an associate professor of chemical and biomolecular engineering at Cornell University and a former editor of the Elsevier journal Fuel, laments the publisher’s handling of the threat from paper mills.

“I was assessing upwards of 50 papers every day,” she said in an email interview. While she had technology to detect plagiarism, duplicate submissions and suspicious author changes, it was not enough. “It’s unreasonable to think that an editor – for whom this is not usually their full-time job – can catch these things reading 50 papers at a time. The time crunch, plus pressure from publishers to increase submission rates and citations and decrease review time, puts editors in an impossible situation.”

In October 2023, Goldfarb resigned from her position as editor of Fuel. In a LinkedIn post about her decision, she cited the company’s failure to move on dozens of potential paper-mill articles she had flagged; its hiring of a principal editor who reportedly “engaged in paper and citation milling”; and its proposal of candidates for editorial positions “with longer PubPeer profiles and more retractions than most people have articles on their CVs, and whose names appear as authors on papers-for-sale websites.”

“This tells me, our community, and the public, that they value article quantity and profit over science,” Goldfarb wrote.

In response to questions about Goldfarb’s resignation, an Elsevier spokesperson told The Conversation that it “takes all claims about research misconduct in our journals very seriously” and is investigating Goldfarb’s claims. The spokesperson added that Fuel’s editorial team has “been working to make other changes to the journal to benefit authors and readers.”

That’s not how it works, buddy

Business proposals had been piling up for years in the inbox of João de Deus Barreto Segundo, managing editor of six journals published by the Bahia School of Medicine and Public Health in Salvador, Brazil. Several came from suspect publishers on the prowl for new journals to add to their portfolios. Others came from academics suggesting fishy deals or offering bribes to publish their paper.

In one email from February 2024, an assistant professor of economics in Poland explained that he ran a company that worked with European universities. “Would you be interested in collaboration on the publication of scientific articles by scientists who collaborate with me?” Artur Borcuch inquired. “We will then discuss possible details and financial conditions.”

A university administrator in Iraq was more candid: “As an incentive, I am prepared to offer a grant of $500 for each accepted paper submitted to your esteemed journal,” wrote Ahmed Alkhayyat, head of the Islamic University Centre for Scientific Research, in Najaf, and manager of the school’s “world ranking.”

“That’s not how it works, buddy,” Barreto Segundo shot back.

In email to The Conversation, Borcuch denied any improper intent. “My role is to mediate in the technical and procedural aspects of publishing an article,” Borcuch said, adding that, when working with multiple scientists, he would “request a discount from the editorial office on their behalf.” Informed that the Brazilian publisher had no publication fees, Borcuch said a “mistake” had occurred because an “employee” sent the email for him “to different journals.”

Academic journals have different payment models. Many are subscription-based and don’t charge authors for publishing, but have hefty fees for reading articles. Libraries and universities also pay large sums for access.

A fast-growing open-access model – where anyone can read the paper – includes expensive publication fees levied on authors to make up for the loss of revenue in selling the articles. These payments are not meant to influence whether or not a manuscript is accepted.

The Bahia School of Medicine and Public Health, among others, doesn’t charge authors or readers, but Barreto Segundo’s employer is a small player in the scholarly publishing business, which brings in close to $30 billion a year on profit margins as high as 40%. Academic publishers make money largely from subscription fees from institutions like libraries and universities, individual payments to access paywalled articles, and open-access fees paid by authors to ensure their articles are free for anyone to read.

The industry is lucrative enough that it has attracted unscrupulous actors eager to find a way to siphon off some of that revenue.

Ahmed Torad, a lecturer at Kafr El Sheikh University in Egypt and editor-in-chief of the Egyptian Journal of Physiotherapy, asked for a 30% kickback for every article he passed along to the Brazilian publisher. “This commission will be calculated based on the publication fees generated by the manuscripts I submit,” Torad wrote, noting that he specialized “in connecting researchers and authors with suitable journals for publication.”

Screenshot of text with yellow background

Excerpt from Ahmed Torad’s email suggesting a kickback.

Screenshot by The Conversation, CC BY-ND

Apparently, he failed to notice that Bahia School of Medicine and Public Health doesn’t charge author fees.

Like Borcuch, Alkhayyat denied any improper intent. He said there had been a “misunderstanding” on the editor’s part, explaining that the payment he offered was meant to cover presumed article-processing charges. “Some journals ask for money. So this is normal,” Alkhayyat said.

Torad explained that he had sent his offer to source papers in exchange for a commission to some 280 journals, but had not forced anyone to accept the manuscripts. Some had balked at his proposition, he said, despite regularly charging authors thousands of dollars to publish. He suggested that the scientific community wasn’t comfortable admitting that scholarly publishing has become a business like any other, even if it’s “obvious to many scientists.”

The unwelcome advances all targeted one of the journals Barreto Segundo managed, The Journal of Physiotherapy Research, soon after it was indexed in Scopus, a database of abstracts and citations owned by the publisher Elsevier.

Along with Clarivate’s Web of Science, Scopus has become an important quality stamp for scholarly publications globally. Articles in indexed journals are money in the bank for their authors: They help secure jobs, promotions, funding and, in some countries, even trigger cash rewards. For academics or physicians in poorer countries, they can be a ticket to the global north.

Consider Egypt, a country plagued by dubious clinical trials. Universities there commonly pay employees large sums for international publications, with the amount depending on the journal’s impact factor. A similar incentive structure is hardwired into national regulations: To earn the rank of full professor, for example, candidates must have at least five publications in two years, according to Egypt’s Supreme Council of Universities. Studies in journals indexed in Scopus or Web of Science not only receive extra points, but they also are exempt from further scrutiny when applicants are evaluated. The higher a publication’s impact factor, the more points the studies get.

With such a focus on metrics, it has become common for Egyptian researchers to cut corners, according to a physician in Cairo who requested anonymity for fear of retaliation. Authorship is frequently gifted to colleagues who then return the favor later, or studies may be created out of whole cloth. Sometimes an existing legitimate paper is chosen from the literature, and key details such as the type of disease or surgery are then changed and the numbers slightly modified, the source explained.

It affects clinical guidelines and medical care, “so it’s a shame,” the physician said.

Ivermectin, a drug used to treat parasites in animals and humans, is a case in point. When some studies showed that it was effective against COVID-19, ivermectin was hailed as a “miracle drug” early in the pandemic. Prescriptions surged, and along with them calls to U.S. poison centers; one man spent nine days in the hospital after downing an injectable formulation of the drug that was meant for cattle, according to the Centers for Disease Control and Prevention. As it turned out, nearly all of the research that showed a positive effect on COVID-19 had indications of fakery, the BBC and others reported – including a now-withdrawn Egyptian study. With no apparent benefit, patients were left with just side effects.

Research misconduct isn’t limited to emerging economies, having recently felled university presidents and top scientists at government agencies in the United States. Neither is the emphasis on publications. In Norway, for example, the government allocates funding to research institutes, hospitals and universities based on how many scholarly works employees publish, and in which journals. The country has decided to partly halt this practice starting in 2025.

“There’s a huge academic incentive and profit motive,” says Lisa Bero, a professor of medicine and public health at the University of Colorado Anschutz Medical Campus and the senior research-integrity editor at the Cochrane Collaboration, an international nonprofit organization that produces evidence reviews about medical treatments. “I see it at every institution I’ve worked at.”

But in the global south, the publish-or-perish edict runs up against underdeveloped research infrastructures and education systems, leaving scientists in a bind. For a Ph.D., the Cairo physician who requested anonymity conducted an entire clinical trial single-handedly – from purchasing study medication to randomizing patients, collecting and analyzing data and paying article-processing fees. In wealthier nations, entire teams work on such studies, with the tab easily running into the hundreds of thousands of dollars.

“Research is quite challenging here,” the physician said. That’s why scientists “try to manipulate and find easier ways so they get the job done.”

Institutions, too, have gamed the system with an eye to international rankings. In 2011, the journal Science described how prolific researchers in the United States and Europe were offered hefty payments for listing Saudi universities as secondary affiliations on papers. And in 2023, the magazine, in collaboration with Retraction Watch, uncovered a massive self-citation ploy by a top-ranked dental school in India that forced undergraduate students to publish papers referencing faculty work.

The root – and solutions

Such unsavory schemes can be traced back to the introduction of performance-based metrics in academia, a development driven by the New Public Management movement that swept across the Western world in the 1980s, according to Canadian sociologist of science Yves Gingras of the Université du Québec à Montréal. When universities and public institutions adopted corporate management, scientific papers became “accounting units” used to evaluate and reward scientific productivity rather than “knowledge units” advancing our insight into the world around us, Gingras wrote.

This transformation led many researchers to compete on numbers instead of content, which made publication metrics poor measures of academic prowess. As Gingras has shown, the controversial French microbiologist Didier Raoult, who now has more than a dozen retractions to his name, has an h-index – a measure combining publication and citation numbers – that is twice as high as that of Albert Einstein – “proof that the index is absurd,” Gingras said.

Worse, a sort of scientific inflation, or “scientometric bubble,” has ensued, with each new publication representing an increasingly small increment in knowledge. “We publish more and more superficial papers, we publish papers that have to be corrected, and we push people to do fraud,” said Gingras.

In terms of career prospects of individual academics, too, the average value of a publication has plummeted, triggering a rise in the number of hyperprolific authors. One of the most notorious cases is Spanish chemist Rafael Luque, who in 2023 reportedly published a study every 37 hours.

In 2024, Landon Halloran, a geoscientist at the University of Neuchâtel, in Switzerland, received an unusual job application for an opening in his lab. A researcher with a Ph.D. from China had sent him his CV. At 31, the applicant had amassed 160 publications in Scopus-indexed journals, 62 of them in 2022 alone, the same year he obtained his doctorate. Although the applicant was not the only one “with a suspiciously high output,” according to Halloran, he stuck out. “My colleagues and I have never come across anything quite like it in the geosciences,” he said.

According to industry insiders and publishers, there is more awareness now of threats from paper mills and other bad actors. Some journals routinely check for image fraud. A bad AI-generated image showing up in a paper can either be a sign of a scientist taking an ill-advised shortcut, or a paper mill.

The Cochrane Collaboration has a policy excluding suspect studies from its analyses of medical evidence. The organization also has been developing a tool to help its reviewers spot problematic medical trials, just as publishers have begun to screen submissions and share data and technologies among themselves to combat fraud.

Set of six graphical images that resemble lungs, spiked balls, and vials filled with small round balls

This image, generated by AI, is a visual gobbledygook of concepts around transporting and delivering drugs in the body. For instance, the upper left figure is a nonsensical mix of a syringe, an inhaler and pills. And the pH-sensitive carrier molecule on the lower left is huge, rivaling the size of the lungs. After scientist sleuths pointed out that the published image made no sense, the journal issued a correction.

Screen capture by The Conversation, CC BY-ND

Set of six graphical images of lungs and molecules

This graphic is the corrected image that replaced the AI image above. In this case, according to the correction, the journal determined that the paper was legitimate but the scientists had used AI to generate the image describing it.

Screen capture by The Conversation, CC BY-ND

“People are realizing like, wow, this is happening in my field, it’s happening in your field,” said the Cochrane Collaboration’s Bero”. “So we really need to get coordinated and, you know, develop a method and a plan overall for stamping these things out.”

What jolted Taylor & Francis into paying attention, according to Alam, the director of Publishing Ethics and Integrity, was a 2020 investigation of a Chinese paper mill by sleuth Elisabeth Bik and three of her peers who go by the pseudonyms Smut Clyde, Morty and Tiger BB8. With 76 compromised papers, the U.K.-based company’s Artificial Cells, Nanomedicine, and Biotechnology was the most affected journal identified in the probe.

“It opened up a minefield,” says Alam, who also co-chairs United2Act, a project launched in 2023 that brings together publishers, researchers and sleuths in the fight against paper mills. “It was the first time we realized that stock images essentially were being used to represent experiments.”

Taylor & Francis decided to audit the hundreds of articles in its portfolio that contained similar types of images. It doubled Alam’s team, which now has 14.5 positions dedicated to doing investigations, and also began monitoring submission rates. Paper mills, it seemed, weren’t picky customers.

“What they’re trying to do is find a gate, and if they get in, then they just start kind of slamming in the submissions,” Alam said. Seventy-six fake papers suddenly seemed like a drop in the ocean. At one Taylor & Francis journal, for instance, Alam’s team identified nearly 1,000 manuscripts that bore all the marks of coming from a mill, she said.

And in 2023, it rejected about 300 dodgy proposals for special issues. “We’ve blocked a hell of a lot from coming through,” Alam said.

Fraud checkers

A small industry of technology startups has sprung up to help publishers, researchers and institutions spot potential fraud. The website Argos, launched in September 2024 by Scitility, an alert service based in Sparks, Nevada, allows authors to check if new collaborators are trailed by retractions or misconduct concerns. It has flagged tens of thousands of “high-risk” papers, according to the journal Nature.

Red Rejected stamped on white paper

Fraud-checker tools sift through papers to point to those that should be manually checked and possibly rejected.

solidcolours/iStock via Getty Images

Morressier, a scientific conference and communications company based in Berlin, “aims to restore trust in science by improving the way scientific research is published”, according to its website. It offers integrity tools that target the entire research life cycle. Other new paper-checking tools include Signals, by London-based Research Signals, and Clear Skies’ Papermill Alarm.

The fraudsters have not been idle, either. In 2022, when Clear Skies released the Papermill Alarm, the first academic to inquire about the new tool was a paper miller, according to Day. The person wanted access so he could check his papers before firing them off to publishers, Day said. “Paper mills have proven to be adaptive and also quite quick off the mark.”

Given the ongoing arms race, Alam acknowledges that the fight against paper mills won’t be won as long as the booming demand for their products remains.

According to a Nature analysis, the retraction rate tripled from 2012 to 2022 to close to .02%, or around 1 in 5,000 papers. It then nearly doubled in 2023, in large part because of Wiley’s Hindawi debacle. Today’s commercial publishing is part of the problem, Byrne said. For one, cleaning up the literature is a vast and expensive undertaking with no direct financial upside. “Journals and publishers will never, at the moment, be able to correct the literature at the scale and in the timeliness that’s required to solve the paper-mill problem,” Byrne said. “Either we have to monetize corrections such that publishers are paid for their work, or forget the publishers and do it ourselves.”

But that still wouldn’t fix the fundamental bias built into for-profit publishing: Journals don’t get paid for rejecting papers. “We pay them for accepting papers,” said Bodo Stern, a former editor of the journal Cell and chief of Strategic Initiatives at Howard Hughes Medical Institute, a nonprofit research organization and major funder in Chevy Chase, Maryland. “I mean, what do you think journals are going to do? They’re going to accept papers.”

With more than 50,000 journals on the market, even if some are trying hard to get it right, bad papers that are shopped around long enough eventually find a home, Stern added. “That system cannot function as a quality-control mechanism,” he said. “We have so many journals that everything can get published.”

In Stern’s view, the way to go is to stop paying journals for accepting papers and begin looking at them as public utilities that serve a greater good. “We should pay for transparent and rigorous quality-control mechanisms,” he said.

Peer review, meanwhile, “should be recognized as a true scholarly product, just like the original article, because the authors of the article and the peer reviewers are using the same skills,” Stern said. By the same token, journals should make all peer-review reports publicly available, even for manuscripts they turn down. “When they do quality control, they can’t just reject the paper and then let it be published somewhere else,” Stern said. “That’s not a good service.”

Better measures

Stern isn’t the first scientist to bemoan the excessive focus on bibliometrics. “We need less research, better research, and research done for the right reasons,” wrote the late statistician Douglas G. Altman in a much-cited editorial from 1994. “Abandoning using the number of publications as a measure of ability would be a start.”

Nearly two decades later, a group of some 150 scientists and 75 science organizations released the San Francisco Declaration on Research Assessment, or DORA, discouraging the use of the journal impact factor and other measures as proxies for quality. The 2013 declaration has since been signed by more than 25,000 individuals and organizations in 165 countries.

Despite the declaration, metrics remain in wide use today, and scientists say there is a new sense of urgency.

“We’re getting to the point where people really do feel they have to do something” because of the vast number of fake papers, said Richard Sever, assistant director of Cold Spring Harbor Laboratory Press, in New York, and co-founder of the preprint servers bioRxiv and medRxiv.

Stern and his colleagues have tried to make improvements at their institution. Researchers who wish to renew their seven-year contract have long been required to write a short paragraph describing the importance of their major results. Since the end of 2023, they also have been asked to remove journal names from their applications.

That way, “you can never do what all reviewers do – I’ve done it – look at the bibliography and in just one second decide, ‘Oh, this person has been productive because they have published many papers and they’re published in the right journals,’” says Stern. “What matters is, did it really make a difference?”

Shifting the focus away from convenient performance metrics seems possible not just for wealthy private institutions like Howard Hughes Medical Institute, but also for large government funders. In Australia, for example, the National Health and Medical Research Council in 2022 launched the “top 10 in 10” policy, aiming, in part, to “value research quality rather than quantity of publications.”

Rather than providing their entire bibliography, the agency, which assesses thousands of grant applications every year, asked researchers to list no more than 10 publications from the past decade and explain the contribution each had made to science. According to an evaluation report from April, 2024 close to three-quarters of grant reviewers said the new policy allowed them to concentrate more on research quality than quantity. And more than half said it reduced the time they spent on each application.

Gingras, the Canadian sociologist, advocates giving scientists the time they need to produce work that matters, rather than a gushing stream of publications. He is a signatory to the Slow Science Manifesto: “Once you get slow science, I can predict that the number of corrigenda, the number of retractions, will go down,” he says.

At one point, Gingras was involved in evaluating a research organization whose mission was to improve workplace security. An employee presented his work. “He had a sentence I will never forget,” Gingras recalls. The employee began by saying, “‘You know, I’m proud of one thing: My h-index is zero.’ And it was brilliant.” The scientist had developed a technology that prevented fatal falls among construction workers. “He said, ‘That’s useful, and that’s my job.’ I said, ‘Bravo!’”

Learn more about how the Problematic Paper Screener uncovers compromised papers.The Conversation

Frederik Joelving, Contributing editor, Retraction Watch; Cyril Labbé, Professor of Computer Science, Université Grenoble Alpes (UGA), and Guillaume Cabanac, Professor of Computer Science, Institut de Recherche en Informatique de Toulouse

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Fake papers are contaminating the world’s scientific literature, fueling a corrupt industry and slowing legitimate lifesaving medical research appeared first on theconversation.com

The Conversation

Study shows surge of imagery and fakes can precede international and political violence

Published

on

theconversation.com – Tim Weninger, Collegiate Proessor of Engineering, University of Notre Dame – 2025-04-24 07:59:00

AI tools reveal how images have been manipulated.
William Theisen et al.

Tim Weninger, University of Notre Dame and Ernesto Verdeja, University of Notre Dame

Imagine a country with deep political divisions, where different groups don’t trust each other and violence seems likely. Now, imagine a flood of political images, hateful memes and mocking videos from domestic and foreign sources taking over social media. What is likely to happen next?

The widespread use of social media during times of political trouble and violence has made it harder to prevent conflict and build peace. Social media is changing, with new technologies and strategies available to influence what people think during political crises. These include new ways to promote beliefs and goals, gain support, dehumanize opponents, justify violence and create doubt or dismiss inconvenient facts.

At the same time, the technologies themselves are becoming more sophisticated. More and more, social media campaigns use images such as memes, videos and photos – whether edited or not – that have a bigger impact on people than just text.

It’s harder for AI systems to understand images compared with text. For example, it’s easier to track posts that say “Ukrainians are Nazis” than it is to find and understand fake images showing Ukrainian soldiers with Nazi symbols. But these kinds of images are becoming more common. Just as a picture is worth a thousand words, a meme is worth a thousand tweets.

Our team of computer and social scientists has tackled the challenge of interpreting image content by combining artificial intelligence methods with human subject matter experts to study how visual social media posts change in high-risk situations. Our research shows that these changes in social media posts, especially those with images, serve as strong indicators of coming mass violence.

Surge of memes

Our recent analysis found that in the two weeks leading up to Russia’s 2022 invasion of Ukraine there was a nearly 9,000% increase in the number of posts and a more than 5,000% increase in manipulated images from Russian milbloggers. Milbloggers are bloggers who focus on current military conflicts.

These huge increases show how intense Russia’s online propaganda campaign was and how it used social media to influence people’s opinions and justify the invasion.

This also shows the need to better monitor and analyze visual content on social media. To conduct our analysis, we collected the entire history of posts and images from the accounts of 989 Russian milbloggers on the messaging app Telegram. This includes nearly 6 million posts and over 3 million images. Each post and image was time-stamped and categorized to facilitate detailed analysis.

Media forensics

We had previously developed a suite of AI tools capable of detecting image alterations and manipulations. For instance, one detected image shows a pro-Russian meme mocking anti-Putin journalist and former Russian soldier Arkady Babchenko, whose death was faked by Ukrainian security services to expose an assassination plot against him.

The meme features the language “gamers don’t die, they respawn,” alluding to video game characters who return to life after dying. This makes light of Babchenko’s predicament and illustrates the use of manipulated images to convey political messages and influence public opinion.

This is just one example out of millions of images that were strategically manipulated to promote various narratives. Our statistical analysis revealed a massive increase in both the number of images and the extent of their manipulations prior to the invasion.

Political context is critical

Although these AI systems are very good at finding fakes, they are incapable of understanding the images’ political contexts. It is therefore critical that AI scientists work closely with social scientists in order to properly interpret these findings.

Our AI systems also categorized images by similarity, which then allowed subject experts to further analyze image clusters based on their narrative content and culturally and politically specific meanings. This is impossible to do at a large scale without AI support.

For example, a fake image of French president Emmanuel Macron with Ukrainian governor Vitalii Kim may be meaningless to an AI scientist. But to political scientists the image appears to laud Ukrainians’ outsize courage in contrast to foreign leaders who have appeared to be afraid of Russian nuclear threats. The goal was to reinforce Ukrainian doubts about their European allies.

image of of two men, one seated
This manipulated image combines French president Emmanuel Macron with Ukranian governor Vitalii Kim. It requires the expertise of political scientists to interpret the creator’s pro-Russian meaning.
William Theisen et al.

Meme warfare

The shift to visual media in recent years brings a new type of data that researchers haven’t yet studied much in detail.

Looking at images can help researchers understand how adversaries frame each other and how this can lead to political conflict. By studying visual content, researchers can see how stories and ideas are spread, which helps us understand the psychological and social factors involved.

This is especially important for finding more advanced and subtle ways people are influenced. Projects like this also can contribute to improving early warning efforts and reduce the risks of violence and instability.The Conversation

Tim Weninger, Collegiate Proessor of Engineering, University of Notre Dame and Ernesto Verdeja, Associate Professor of Peace Studies and Global Politics, University of Notre Dame

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Study shows surge of imagery and fakes can precede international and political violence appeared first on theconversation.com

Continue Reading

The Conversation

Colors are objective, according to two philosophers − even though the blue you see doesn’t match what I see

Published

on

theconversation.com – Elay Shech, Professor of Philosophy, Auburn University – 2025-04-25 07:55:00

What appear to be blue and green spirals are actually the same color.
Akiyoshi Kitaoka

Elay Shech, Auburn University and Michael Watkins, Auburn University

Is your green my green? Probably not. What appears as pure green to me will likely look a bit yellowish or blueish to you. This is because visual systems vary from person to person. Moreover, an object’s color may appear differently against different backgrounds or under different lighting.

These facts might naturally lead you to think that colors are subjective. That, unlike features such as length and temperature, colors are not objective features. Either nothing has a true color, or colors are relative to observers and their viewing conditions.

But perceptual variation has misled you. We are philosophers who study colors, objectivity and science, and we argue in our book “The Metaphysics of Colors” that colors are as objective as length and temperature.

Perceptual variation

There is a surprising amount of variation in how people perceive the world. If you offer a group of people a spectrum of color chips ranging from chartreuse to purple and asked them to pick the unique green chip – the chip with no yellow or blue in it – their choices would vary considerably. Indeed, there wouldn’t be a single chip that most observers would agree is unique green.

Generally, an object’s background can result in dramatic changes in how you perceive its colors. If you place a gray object against a lighter background, it will appear darker than if you place it against a darker background. This variation in perception is perhaps most striking when viewing an object under different lighting, where a red apple could look green or blue.

Of course, that you experience something differently does not prove that what is experienced is not objective. Water that feels cold to one person may not feel cold to another. And although we do not know who is feeling the water “correctly,” or whether that question even makes sense, we can know the temperature of the water and presume that this temperature is independent of your experience.

Similarly, that you can change the appearance of something’s color is not the same as changing its color. You can make an apple look green or blue, but that is not evidence that the apple is not red.

Apple under a gradient of red to blue light
Under different lighting conditions, objects take on different colors.
Gyozo Vaczi/iStock via Getty Images Plus

For comparison, the Moon appears larger when it’s on the horizon than when it appears near its zenith. But the size of the Moon has not changed, only its appearance. Hence, that the appearance of an object’s color or size varies is, by itself, no reason to think that its color and size are not objective features of the object. In other words, the properties of an object are independent of how they appear to you.

That said, given that there is so much variation in how objects appear, how do you determine what color something actually is? Is there a way to determine the color of something despite the many different experiences you might have of it?

Matching colors

Perhaps determining the color of something is to determine whether it is red or blue. But we suggest a different approach. Notice that squares that appear to be the same shade of pink against different backgrounds look different against the same background.

Green, purple and orange squares with smaller squares in shades of pink placed at their centers and at the bottom of the image
The smaller squares may appear to be the same color, but if you compare them with the strip of squares at the bottom, they’re actually different shades.
Shobdohin/Wikimedia Commons, CC BY-SA

It’s easy to assume that to prove colors are objective would require knowing which observers, lighting conditions and backgrounds are the best, or “normal.” But determining the right observers and viewing conditions is not required for determining the very specific color of an object, regardless of its name. And it is not required to determine whether two objects have the same color.

To determine whether two objects have the same color, an observer would need to view the objects side by side against the same background and under various lighting conditions. If you painted part of a room and find that you don’t have enough paint, for instance, finding a match might be very tricky. A color match requires that no observer under any lighting condition will see a difference between the new paint and the old.

YouTube video
Is the dress yellow and white or black and blue?

That two people can determine whether two objects have the same color even if they don’t agree on exactly what that color is – just as a pool of water can have a particular temperature without feeling the same to me and you – seems like compelling evidence to us that colors are objective features of our world.

Colors, science and indispensability

Everyday interactions with colors – such as matching paint samples, determining whether your shirt and pants clash, and even your ability to interpret works of art – are hard to explain if colors are not objective features of objects. But if you turn to science and look at the many ways that researchers think about colors, it becomes harder still.

For example, in the field of color science, scientific laws are used to explain how objects and light affect perception and the colors of other objects. Such laws, for instance, predict what happens when you mix colored pigments, when you view contrasting colors simultaneously or successively, and when you look at colored objects in various lighting conditions.

The philosophers Hilary Putnam and Willard van Orman Quine made famous what is known as the indispensability argument. The basic idea is that if something is indispensable to science, then it must be real and objective – otherwise, science wouldn’t work as well as it does.

For example, you may wonder whether unobservable entities such as electrons and electromagnetic fields really exist. But, so the argument goes, the best scientific explanations assume the existence of such entities and so they must exist. Similarly, because mathematics is indispensable to contemporary science, some philosophers argue that this means mathematical objects are objective and exist independently of a person’s mind.

Blue damselfish, seeming iridescent against a black background
The color of an animal can exert evolutionary pressure.
Paul Starosta/Stone via Getty Images

Likewise, we suggest that color plays an indispensable role in evolutionary biology. For example, researchers have argued that aposematism – the use of colors to signal a warning for predators – also benefits an animal’s ability to gather resources. Here, an animal’s coloration works directly to expand its food-gathering niche insofar as it informs potential predators that the animal is poisonous or venomous.

In fact, animals can exploit the fact that the same color pattern can be perceived differently by different perceivers. For instance, some damselfish have ultraviolet face patterns that help them be recognized by other members of their species and communicate with potential mates while remaining largely hidden to predators unable to perceive ultraviolet colors.

In sum, our ability to determine whether objects are colored the same or differently and the indispensable roles they play in science suggest that colors are as real and objective as length and temperature.The Conversation

Elay Shech, Professor of Philosophy, Auburn University and Michael Watkins, Professor of Philosophy, Auburn University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Colors are objective, according to two philosophers − even though the blue you see doesn’t match what I see appeared first on theconversation.com

Continue Reading

The Conversation

‘Extraordinary claims require extraordinary evidence’ − an astronomer explains how much evidence scientists need to claim discoveries like extraterrestrial life

Published

on

theconversation.com – Chris Impey, University Distinguished Professor of Astronomy, University of Arizona – 2025-04-25 07:54:00

The universe is filled with countless galaxies, stars and planets. Astronomers may find life one day, but they will need extraordinary proof.
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

Chris Impey, University of Arizona

The detection of life beyond Earth would be one of the most profound discoveries in the history of science. The Milky Way galaxy alone hosts hundreds of millions of potentially habitable planets. Astronomers are using powerful space telescopes to look for molecular indicators of biology in the atmospheres of the most Earth-like of these planets.

But so far, no solid evidence of life has ever been found beyond the Earth. A paper published in April 2025 claimed to detect a signature of life in the atmosphere of the planet K2-18b. And while this discovery is intriguing, most astronomers – including the paper’s authors – aren’t ready to claim that it means extraterrestrial life exists. A detection of life would be a remarkable development.

The astronomer Carl Sagan used the phrase, “Extraordinary claims require extraordinary evidence,” in regard to searching for alien life. It conveys the idea that there should be a high bar for evidence to support a remarkable claim.

I’m an astronomer who has written a book about astrobiology. Over my career, I’ve seen some compelling scientific discoveries. But to reach this threshold of finding life beyond Earth, a result needs to fit several important criteria.

When is a result important and reliable?

There are three criteria for a scientific result to represent a true discovery and not be subject to uncertainty and doubt. How does the claim of life on K2-18b measure up?

First, the experiment needs to measure a meaningful and important quantity. Researchers observed K2-18b’s atmosphere with the James Webb Space Telescope and saw a spectral feature that they identified as dimethyl sulfide.

On Earth, dimethyl sulfide is associated with biology, in particular bacteria and plankton in the oceans. However, it can also arise by other means, so this single molecule is not conclusive proof of life.

Second, the detection needs to be strong. Every detector has some noise from the random motion of electrons. The signal should be strong enough to have a low probability of arising by chance from this noise.

The K2-18b detection has a significance of 3-sigma, which means it has a 0.3% probability of arising by chance.

That sounds low, but most scientists would consider that a weak detection. There are many molecules that could create a feature in the same spectral range.

The “gold standard” for scientific detection is 5-sigma, which means the probability of the finding happening by chance is less than 0.00006%. For example, physicists at CERN gathered data patiently for two years until they had a 5-sigma detection of the Higgs boson particle, leading to a Nobel Prize one year later in 2013.

YouTube video
The announcement of the discovery of the Higgs boson took decades from the time Peter Higgs first predicted the existence of the particle. Scientists, such as Joe Incandela shown here, waited until they’d reached that 5-sigma level to say, ‘I think we have it.’

Third, a result needs to be repeatable. Results are considered reliable when they’ve been repeated – ideally corroborated by other investigators or confirmed using a different instrument. For K2-18b, this might mean detecting other molecules that indicate biology, such as oxygen in the planet’s atmosphere. Without more and better data, most researchers are viewing the claim of life on K2-18b with skepticism.

Claims of life on Mars

In the past, some scientists have claimed to have found life much closer to home, on the planet Mars.

Over a century ago, retired Boston merchant turned astronomer Percival Lowell claimed that linear features he saw on the surface of Mars were canals, constructed by a dying civilization to transport water from the poles to the equator. Artificial waterways on Mars would certainly have been a major discovery, but this example failed the other two criteria: strong evidence and repeatability.

Lowell was misled by his visual observations, and he was engaging in wishful thinking. No other astronomers could confirm his findings.

An image of Mars in space
Mars, as taken by the OSIRIS instrument on the ESA Rosetta spacecraft during its February 2007 flyby of the planet and adjusted to show color.
ESA & MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA, CC BY-SA

In 1996, NASA held a press conference where a team of scientists presented evidence for biology in the Martian meteorite ALH 84001. Their evidence included an evocative image that seemed to show microfossils in the meteorite.

However, scientists have come up with explanations for the meteorite’s unusual features that do not involve biology. That extraordinary claim has dissipated.

More recently, astronomers detected low levels of methane in the atmosphere of Mars. Like dimethyl sulfide and oxygen, methane on Earth is made primarily – but not exclusively – by life. Different spacecraft and rovers on the Martian surface have returned conflicting results, where a detection with one spacecraft was not confirmed by another.

The low level and variability of methane on Mars is still a mystery. And in the absence of definitive evidence that this very low level of methane has a biological origin, nobody is claiming definitive evidence of life on Mars.

Claims of advanced civilizations

Detecting microbial life on Mars or an exoplanet would be dramatic, but the discovery of extraterrestrial civilizations would be truly spectacular.

The search for extraterrestrial intelligence, or SETI, has been underway for 75 years. No messages have ever been received, but in 1977 a radio telescope in Ohio detected a strong signal that lasted only for a minute.

This signal was so unusual that an astronomer working at the telescope wrote “Wow!” on the printout, giving the signal its name. Unfortunately, nothing like it has since been detected from that region of the sky, so the Wow! Signal fails the test of repeatability.

An illustration of a long, thin rock flying through space.
‘Oumuamua is the first object passing through the solar system that astronomers have identified as having interstellar origins.
European Southern Observatory/M. Kornmesser

In 2017, a rocky, cigar-shaped object called ‘Oumuamua was the first known interstellar object to visit the solar system. ‘Oumuamua’s strange shape and trajectory led Harvard astronomer Avi Loeb to argue that it was an alien artifact. However, the object has already left the solar system, so there’s no chance for astronomers to observe it again. And some researchers have gathered evidence suggesting that it’s just a comet.

While many scientists think we aren’t alone, given the enormous amount of habitable real estate beyond Earth, no detection has cleared the threshold enunciated by Carl Sagan.

Claims about the universe

These same criteria apply to research about the entire universe. One particular concern in cosmology is the fact that, unlike the case of planets, there is only one universe to study.

A cautionary tale comes from attempts to show that the universe went through a period of extremely rapid expansion a fraction of a second after the Big Bang. Cosmologists call this event inflation, and it is invoked to explain why the universe is now smooth and flat.

In 2014, astronomers claimed to have found evidence for inflation in a subtle signal from microwaves left over after the Big Bang. Within a year, however, the team retracted the result because the signal had a mundane explanation: They had confused dust in our galaxy with a signature of inflation.

On the other hand, the discovery of the universe’s acceleration shows the success of the scientific method. In 1929, astronomer Edwin Hubble found that the universe was expanding. Then, in 1998, evidence emerged that this cosmic expansion is accelerating. Physicists were startled by this result.

Two research groups used supernovae to separately trace the expansion. In a friendly rivalry, they used different sets of supernovae but got the same result. Independent corroboration increased their confidence that the universe was accelerating. They called the force behind this accelerating expansion dark energy and received a Nobel Prize in 2011 for its discovery.

On scales large and small, astronomers try to set a high bar of evidence before claiming a discovery.The Conversation

Chris Impey, University Distinguished Professor of Astronomy, University of Arizona

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post ‘Extraordinary claims require extraordinary evidence’ − an astronomer explains how much evidence scientists need to claim discoveries like extraterrestrial life appeared first on theconversation.com

Continue Reading

Trending