Connect with us

The Conversation

China tech shrugged off Trump’s ‘trade war’ − there’s no reason it won’t do the same with new tariffs

Published

on

theconversation.com – Yu Zhou, Professor of Economic Geography, Vassar College – 2025-01-17 08:10:00

When it comes to slowing down China’s tech rise, tariffs won’t do the trick.
Costfoto/NurPhoto via Getty Images

Yu Zhou, Vassar College

When Donald Trump returns to the White House, he’ll be accompanied by a coterie of China hawks, all vowing to use tariffs and export bans to stop Beijing from challenging the United States’ supremacy in technology.

This isn’t entirely new; China has faced such trade pressure since Trump first became president in 2017, and it has continued through the Biden administration.

But the scale of what Trump now proposes – he has mentioned tariffs of up to 60% on goods from China – has some commentators suggesting that it could, in the words of one analyst, “keep Beijing on the defensive and permanently transform the rivalry in America’s favor.”

Such a view is premised on the belief that China’s outdated, state-subsidized, manufacturing-for-export model is ripe for disruption by U.S. tariffs.

But as someone who has studied China’s technology since the early 2000s and written and edited two books on China and innovation, I believe this portrayal of China’s economy is at least two decades out of date. China’s technological sectors have grown rapidly after 2016 by adapting to the imposition of American tariffs. Indeed, since the “trade war” launched by Trump in 2017, Chinese technology has actually emerged as a world leader.

China’s tech ascent

Thirty years ago, China barely had internet access, and its best technology company was yet to produce a competitive personal computer domestically. Fifteen years ago, it was the world’s factory – stuck at the low end of the value chain assembling iPhones and other tech gadgets, but not able to make any high-tech parts itself.

Even with the best crystal ball in the mid-2000s, no Chinese planners could have predicted the pathways to China’s technological standing today.

Fast-forward to today: China is now ahead of rival economies across broad technological fields. The think tank Information Technology and Innovation Foundation found in a 2024 report that China is leading or globally competitive in five out of nine high-tech sectors – robotics, nuclear power, electric vehicles, artificial intelligence and quantum computing – and rapidly catching up in four others: chemicals, machine tools, biopharmaceuticals and semiconductors. A Bloomberg analysis similarly identified China as leading or globally competitive in 12 out of 13 technology-intensive industries. And the Australian Strategic Policy Institute found China leading in 37 of 44 critical technologies it tracked.

Why has the Chinese tech industry advanced so quickly? Many in Washington believe it’s the result of decades of careful government planning to dominate global high-tech industries. But this, I believe, vastly overestimates Beijing’s foresight and control. The Chinese government has indeed maintained the lofty goal of catching up with the West since the 1980s, but having goals isn’t the same as being able to execute them.

A man in a white hazmat suit works at a desk.
An employee produces semiconductor chips at a factory in China’s Shandong province on Jan. 15, 2025.
STR/AFP via Getty Images

Many in the West also point at Chinese state subsidies propping up domestic tech firms. While subsidies have played a role in some tech successes, the Chinese government has also funded plenty of failures. Take semiconductors, for example: Despite enormous Chinese government investments since the 1990s, China still lags in producing cutting-edge chips and is reliant on imports.

Dare to D.R.E.A.M.

In my view, China’s technological dynamism didn’t come from the magic of central planning, but through five key elements I call D.R.E.A.M..

D denotes the dialogue between state and market.

While China’s government wields significant power, the country’s private sector is neither submissive nor powerless. In 2022, firms not owned by the state – mostly private firms but also offshore firms in which Beijing does not have a controlling share – accounted for 95% of enterprise R&D spending and 88% of urban employment.

While Beijing has cracked down on tech giants – it banned Alibaba’s Ant Group from listing on the New York Stock Exchange in 2020, and its COVID-19 lockdown hurt its private sector – the government is not, contrary to how it is seen by many in the West, bound by strict ideology. It has recently started to voice more support for the private sector, even drafting laws to protect private companies.

Indeed, it’s more accurate to describe state-market relations in China as dynamic, adaptive interaction – more dialogue than dictatorship.

R refers to the domestic research and development (R&D).

Once reliant on imported technology, China has invested heavily in domestic research capacity over the past 20 years. Geopolitical tensions accelerated a shift toward self-reliance, but Chinese scientists and engineers remain deeply engaged in global networks.

Further, a nominally anti-espionage program brought in under Trump’s first administration has swelled the number of highly skilled workers in China. The “China initiative” introduced by the U.S. Justice Department in 2018 promoted the suspicion – often without evidence – that Chinese and Chinese American scientists might be spying for Beijing, resulting in a flood of leading scientists heading back to China. There they continued to undertake cutting-edge research and educate a new generation of Chinese scientists.

E is for the industrial ecosystem China can exploit.

China’s vast manufacturing base enables rapid creation and scaling of new technologies. In 2023, China produced 35% of the global gross manufacturing output, being the only country covering all major industrial sectors.

China may not have the innovative ecosystem of Silicon Valley, which can draw on deep venture capital and a booming stock market. But it has built comprehensive supply chains over the years, and it’s exceptionally good at repurposing them to rapidly bring new products to market.

Take the example of robotics. China took the robotics industry seriously only when labor costs rose sharply. In 2010, China’s manufacturing labor costs were about $2 per hour, similar to the Philippines or Vietnam; by 2022, that figure rose to about $8 per hour – more than double the average of Southeast Asian countries.

China now installs more industrial robots annually than the rest of the world combined, and the quality of its robots has grown by leaps and bounds.

A stands for accumulative changes.

Rather than aiming for novel breakthroughs, Chinese companies excel at incremental improvements – and this results in an accumulative transforming effect. The massive manufacturing networks create opportunities to improve upon existing products based on market feedback, rather than a few brilliant ideas from any leader’s creative mind.

Analysts in the U.S. have long expected China’s rampant intellectual property violations to doom its innovation drive, the thinking being that it takes away the impetus for individuals to innovate if they believe such innovations will be stolen. Instead, as Taiwanese tech expert and writer Kai-Fu Lee has explained, Chinese enterprises can be dynamic and innovative in an environment with less IP protection. They often rapidly expand their market share and build business ecosystems to prevent followers from catching up.

M means the middle market.

Chinese firms tend to target middle-income consumers, both domestically and globally. By prioritizing affordability and functionality over cutting-edge innovation, they avoid head-to-head competition with Western giants such as Apple.

Chinese smartphone brands such as Xiaomi and Oppo are a third to half the price of an iPhone, but with similar functionalities. Chinese electric vehicles are similarly far less expensive than Tesla but still incorporate leading features.

Chinese firms tolerate lower profit margins, as they can rely on the expanded sales in the middle market, both domestically and, increasingly, overseas.

A man and a woman look at a car.
A JIDU 07 electric car draws attention at the 2024 China International Auto Show in Tianjin, China, on Oct. 3, 2024.
CFOTO/Future Publishing via Getty Images

Tariffs as a counterproductive measure

The problem for the incoming Trump administration is that while tariffs might alter the global map of China’s manufacturing and exports, they won’t dismantle any of the D.R.E.A.M. elements. In fact, they could have the opposite effect of accelerating China’s push for self-reliance and strengthening its foothold in global middle markets.

Part of the problem is that American policymakers often see technological competition with China as a zero-sum contest. But technological competition isn’t like a race with distinct lanes and a finish line. Rather, tech transformation is a complex process in which countries and companies compete, collaborate and build on each other’s work.

Ultimately, America’s technological prowess won’t be measured by how much it manages to stop China, but by how successfully American companies can address humanity’s greatest challenges. Attempts to hobble the competition through tariffs and trade wars will do little toward that end.The Conversation

Yu Zhou, Professor of Economic Geography, Vassar College

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post China tech shrugged off Trump’s ‘trade war’ − there’s no reason it won’t do the same with new tariffs appeared first on theconversation.com

The Conversation

Colors are objective, according to two philosophers − even though the blue you see doesn’t match what I see

Published

on

theconversation.com – Elay Shech, Professor of Philosophy, Auburn University – 2025-04-25 07:55:00

What appear to be blue and green spirals are actually the same color.
Akiyoshi Kitaoka

Elay Shech, Auburn University and Michael Watkins, Auburn University

Is your green my green? Probably not. What appears as pure green to me will likely look a bit yellowish or blueish to you. This is because visual systems vary from person to person. Moreover, an object’s color may appear differently against different backgrounds or under different lighting.

These facts might naturally lead you to think that colors are subjective. That, unlike features such as length and temperature, colors are not objective features. Either nothing has a true color, or colors are relative to observers and their viewing conditions.

But perceptual variation has misled you. We are philosophers who study colors, objectivity and science, and we argue in our book “The Metaphysics of Colors” that colors are as objective as length and temperature.

Perceptual variation

There is a surprising amount of variation in how people perceive the world. If you offer a group of people a spectrum of color chips ranging from chartreuse to purple and asked them to pick the unique green chip – the chip with no yellow or blue in it – their choices would vary considerably. Indeed, there wouldn’t be a single chip that most observers would agree is unique green.

Generally, an object’s background can result in dramatic changes in how you perceive its colors. If you place a gray object against a lighter background, it will appear darker than if you place it against a darker background. This variation in perception is perhaps most striking when viewing an object under different lighting, where a red apple could look green or blue.

Of course, that you experience something differently does not prove that what is experienced is not objective. Water that feels cold to one person may not feel cold to another. And although we do not know who is feeling the water “correctly,” or whether that question even makes sense, we can know the temperature of the water and presume that this temperature is independent of your experience.

Similarly, that you can change the appearance of something’s color is not the same as changing its color. You can make an apple look green or blue, but that is not evidence that the apple is not red.

Apple under a gradient of red to blue light
Under different lighting conditions, objects take on different colors.
Gyozo Vaczi/iStock via Getty Images Plus

For comparison, the Moon appears larger when it’s on the horizon than when it appears near its zenith. But the size of the Moon has not changed, only its appearance. Hence, that the appearance of an object’s color or size varies is, by itself, no reason to think that its color and size are not objective features of the object. In other words, the properties of an object are independent of how they appear to you.

That said, given that there is so much variation in how objects appear, how do you determine what color something actually is? Is there a way to determine the color of something despite the many different experiences you might have of it?

Matching colors

Perhaps determining the color of something is to determine whether it is red or blue. But we suggest a different approach. Notice that squares that appear to be the same shade of pink against different backgrounds look different against the same background.

Green, purple and orange squares with smaller squares in shades of pink placed at their centers and at the bottom of the image
The smaller squares may appear to be the same color, but if you compare them with the strip of squares at the bottom, they’re actually different shades.
Shobdohin/Wikimedia Commons, CC BY-SA

It’s easy to assume that to prove colors are objective would require knowing which observers, lighting conditions and backgrounds are the best, or “normal.” But determining the right observers and viewing conditions is not required for determining the very specific color of an object, regardless of its name. And it is not required to determine whether two objects have the same color.

To determine whether two objects have the same color, an observer would need to view the objects side by side against the same background and under various lighting conditions. If you painted part of a room and find that you don’t have enough paint, for instance, finding a match might be very tricky. A color match requires that no observer under any lighting condition will see a difference between the new paint and the old.

YouTube video
Is the dress yellow and white or black and blue?

That two people can determine whether two objects have the same color even if they don’t agree on exactly what that color is – just as a pool of water can have a particular temperature without feeling the same to me and you – seems like compelling evidence to us that colors are objective features of our world.

Colors, science and indispensability

Everyday interactions with colors – such as matching paint samples, determining whether your shirt and pants clash, and even your ability to interpret works of art – are hard to explain if colors are not objective features of objects. But if you turn to science and look at the many ways that researchers think about colors, it becomes harder still.

For example, in the field of color science, scientific laws are used to explain how objects and light affect perception and the colors of other objects. Such laws, for instance, predict what happens when you mix colored pigments, when you view contrasting colors simultaneously or successively, and when you look at colored objects in various lighting conditions.

The philosophers Hilary Putnam and Willard van Orman Quine made famous what is known as the indispensability argument. The basic idea is that if something is indispensable to science, then it must be real and objective – otherwise, science wouldn’t work as well as it does.

For example, you may wonder whether unobservable entities such as electrons and electromagnetic fields really exist. But, so the argument goes, the best scientific explanations assume the existence of such entities and so they must exist. Similarly, because mathematics is indispensable to contemporary science, some philosophers argue that this means mathematical objects are objective and exist independently of a person’s mind.

Blue damselfish, seeming iridescent against a black background
The color of an animal can exert evolutionary pressure.
Paul Starosta/Stone via Getty Images

Likewise, we suggest that color plays an indispensable role in evolutionary biology. For example, researchers have argued that aposematism – the use of colors to signal a warning for predators – also benefits an animal’s ability to gather resources. Here, an animal’s coloration works directly to expand its food-gathering niche insofar as it informs potential predators that the animal is poisonous or venomous.

In fact, animals can exploit the fact that the same color pattern can be perceived differently by different perceivers. For instance, some damselfish have ultraviolet face patterns that help them be recognized by other members of their species and communicate with potential mates while remaining largely hidden to predators unable to perceive ultraviolet colors.

In sum, our ability to determine whether objects are colored the same or differently and the indispensable roles they play in science suggest that colors are as real and objective as length and temperature.The Conversation

Elay Shech, Professor of Philosophy, Auburn University and Michael Watkins, Professor of Philosophy, Auburn University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Colors are objective, according to two philosophers − even though the blue you see doesn’t match what I see appeared first on theconversation.com

Continue Reading

The Conversation

‘Extraordinary claims require extraordinary evidence’ − an astronomer explains how much evidence scientists need to claim discoveries like extraterrestrial life

Published

on

theconversation.com – Chris Impey, University Distinguished Professor of Astronomy, University of Arizona – 2025-04-25 07:54:00

The universe is filled with countless galaxies, stars and planets. Astronomers may find life one day, but they will need extraordinary proof.
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

Chris Impey, University of Arizona

The detection of life beyond Earth would be one of the most profound discoveries in the history of science. The Milky Way galaxy alone hosts hundreds of millions of potentially habitable planets. Astronomers are using powerful space telescopes to look for molecular indicators of biology in the atmospheres of the most Earth-like of these planets.

But so far, no solid evidence of life has ever been found beyond the Earth. A paper published in April 2025 claimed to detect a signature of life in the atmosphere of the planet K2-18b. And while this discovery is intriguing, most astronomers – including the paper’s authors – aren’t ready to claim that it means extraterrestrial life exists. A detection of life would be a remarkable development.

The astronomer Carl Sagan used the phrase, “Extraordinary claims require extraordinary evidence,” in regard to searching for alien life. It conveys the idea that there should be a high bar for evidence to support a remarkable claim.

I’m an astronomer who has written a book about astrobiology. Over my career, I’ve seen some compelling scientific discoveries. But to reach this threshold of finding life beyond Earth, a result needs to fit several important criteria.

When is a result important and reliable?

There are three criteria for a scientific result to represent a true discovery and not be subject to uncertainty and doubt. How does the claim of life on K2-18b measure up?

First, the experiment needs to measure a meaningful and important quantity. Researchers observed K2-18b’s atmosphere with the James Webb Space Telescope and saw a spectral feature that they identified as dimethyl sulfide.

On Earth, dimethyl sulfide is associated with biology, in particular bacteria and plankton in the oceans. However, it can also arise by other means, so this single molecule is not conclusive proof of life.

Second, the detection needs to be strong. Every detector has some noise from the random motion of electrons. The signal should be strong enough to have a low probability of arising by chance from this noise.

The K2-18b detection has a significance of 3-sigma, which means it has a 0.3% probability of arising by chance.

That sounds low, but most scientists would consider that a weak detection. There are many molecules that could create a feature in the same spectral range.

The “gold standard” for scientific detection is 5-sigma, which means the probability of the finding happening by chance is less than 0.00006%. For example, physicists at CERN gathered data patiently for two years until they had a 5-sigma detection of the Higgs boson particle, leading to a Nobel Prize one year later in 2013.

YouTube video
The announcement of the discovery of the Higgs boson took decades from the time Peter Higgs first predicted the existence of the particle. Scientists, such as Joe Incandela shown here, waited until they’d reached that 5-sigma level to say, ‘I think we have it.’

Third, a result needs to be repeatable. Results are considered reliable when they’ve been repeated – ideally corroborated by other investigators or confirmed using a different instrument. For K2-18b, this might mean detecting other molecules that indicate biology, such as oxygen in the planet’s atmosphere. Without more and better data, most researchers are viewing the claim of life on K2-18b with skepticism.

Claims of life on Mars

In the past, some scientists have claimed to have found life much closer to home, on the planet Mars.

Over a century ago, retired Boston merchant turned astronomer Percival Lowell claimed that linear features he saw on the surface of Mars were canals, constructed by a dying civilization to transport water from the poles to the equator. Artificial waterways on Mars would certainly have been a major discovery, but this example failed the other two criteria: strong evidence and repeatability.

Lowell was misled by his visual observations, and he was engaging in wishful thinking. No other astronomers could confirm his findings.

An image of Mars in space
Mars, as taken by the OSIRIS instrument on the ESA Rosetta spacecraft during its February 2007 flyby of the planet and adjusted to show color.
ESA & MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA, CC BY-SA

In 1996, NASA held a press conference where a team of scientists presented evidence for biology in the Martian meteorite ALH 84001. Their evidence included an evocative image that seemed to show microfossils in the meteorite.

However, scientists have come up with explanations for the meteorite’s unusual features that do not involve biology. That extraordinary claim has dissipated.

More recently, astronomers detected low levels of methane in the atmosphere of Mars. Like dimethyl sulfide and oxygen, methane on Earth is made primarily – but not exclusively – by life. Different spacecraft and rovers on the Martian surface have returned conflicting results, where a detection with one spacecraft was not confirmed by another.

The low level and variability of methane on Mars is still a mystery. And in the absence of definitive evidence that this very low level of methane has a biological origin, nobody is claiming definitive evidence of life on Mars.

Claims of advanced civilizations

Detecting microbial life on Mars or an exoplanet would be dramatic, but the discovery of extraterrestrial civilizations would be truly spectacular.

The search for extraterrestrial intelligence, or SETI, has been underway for 75 years. No messages have ever been received, but in 1977 a radio telescope in Ohio detected a strong signal that lasted only for a minute.

This signal was so unusual that an astronomer working at the telescope wrote “Wow!” on the printout, giving the signal its name. Unfortunately, nothing like it has since been detected from that region of the sky, so the Wow! Signal fails the test of repeatability.

An illustration of a long, thin rock flying through space.
‘Oumuamua is the first object passing through the solar system that astronomers have identified as having interstellar origins.
European Southern Observatory/M. Kornmesser

In 2017, a rocky, cigar-shaped object called ‘Oumuamua was the first known interstellar object to visit the solar system. ‘Oumuamua’s strange shape and trajectory led Harvard astronomer Avi Loeb to argue that it was an alien artifact. However, the object has already left the solar system, so there’s no chance for astronomers to observe it again. And some researchers have gathered evidence suggesting that it’s just a comet.

While many scientists think we aren’t alone, given the enormous amount of habitable real estate beyond Earth, no detection has cleared the threshold enunciated by Carl Sagan.

Claims about the universe

These same criteria apply to research about the entire universe. One particular concern in cosmology is the fact that, unlike the case of planets, there is only one universe to study.

A cautionary tale comes from attempts to show that the universe went through a period of extremely rapid expansion a fraction of a second after the Big Bang. Cosmologists call this event inflation, and it is invoked to explain why the universe is now smooth and flat.

In 2014, astronomers claimed to have found evidence for inflation in a subtle signal from microwaves left over after the Big Bang. Within a year, however, the team retracted the result because the signal had a mundane explanation: They had confused dust in our galaxy with a signature of inflation.

On the other hand, the discovery of the universe’s acceleration shows the success of the scientific method. In 1929, astronomer Edwin Hubble found that the universe was expanding. Then, in 1998, evidence emerged that this cosmic expansion is accelerating. Physicists were startled by this result.

Two research groups used supernovae to separately trace the expansion. In a friendly rivalry, they used different sets of supernovae but got the same result. Independent corroboration increased their confidence that the universe was accelerating. They called the force behind this accelerating expansion dark energy and received a Nobel Prize in 2011 for its discovery.

On scales large and small, astronomers try to set a high bar of evidence before claiming a discovery.The Conversation

Chris Impey, University Distinguished Professor of Astronomy, University of Arizona

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post ‘Extraordinary claims require extraordinary evidence’ − an astronomer explains how much evidence scientists need to claim discoveries like extraterrestrial life appeared first on theconversation.com

Continue Reading

The Conversation

Perfect brownies baked at high altitude are possible thanks to Colorado’s home economics pioneer Inga Allison

Published

on

theconversation.com – Tobi Jacobi, Professor of English, Colorado State University – 2025-04-22 07:47:00

Students work in the high-altitude baking laboratory.
Archives and Special Collections, Colorado State University

Tobi Jacobi, Colorado State University and Caitlin Clark, Colorado State University

Many bakers working at high altitudes have carefully followed a standard recipe only to reach into the oven to find a sunken cake, flat cookies or dry muffins.

Experienced mountain bakers know they need a few tricks to achieve the same results as their fellow artisans working at sea level.

These tricks are more than family lore, however. They originated in the early 20th century thanks to research on high-altitude baking done by Inga Allison, then a professor at Colorado State University. It was Allison’s scientific prowess and experimentation that brought us the possibility of perfect high-altitude brownies and other baked goods.

A recipe for brownies at high altitude.
Inga Allison’s high-altitude brownie recipe.
Archives and Special Collections, Colorado State University

We are two current academics at CSU whose work has been touched by Allison’s legacy.

One of us – Caitlin Clark – still relies on Allison’s lessons a century later in her work as a food scientist in Colorado. The other – Tobi Jacobi – is a scholar of women’s rhetoric and community writing, and an enthusiastic home baker in the Rocky Mountains, who learned about Allison while conducting archival research on women’s work and leadership at CSU.

That research developed into “Knowing Her,” an exhibition Jacobi developed with Suzanne Faris, a CSU sculpture professor. The exhibit highlights dozens of women across 100 years of women’s work and leadership at CSU and will be on display through mid-August 2025 in the CSU Fort Collins campus Morgan Library.

A pioneer in home economics

Inga Allison is one of the fascinating and accomplished women who is part of the exhibit.

Allison was born in 1876 in Illinois and attended the University of Chicago, where she completed the prestigious “science course” work that heavily influenced her career trajectory. Her studies and research also set the stage for her belief that women’s education was more than preparation for domestic life.

In 1908, Allison was hired as a faculty member in home economics at Colorado Agricultural College, which is now CSU. She joined a group of faculty who were beginning to study the effects of altitude on baking and crop growth. The department was located inside Guggenheim Hall, a building that was constructed for home economics education but lacked lab equipment or serious research materials.

A sepia-toned photograph of Inga Allison, a white woman in dark clothes with her hair pulled back.
Inga Allison was a professor of home economics at Colorado Agricultural College, where she developed recipes that worked in high altitudes.
Archives and Special Collections, Colorado State University

Allison took both the land grant mission of the university with its focus on teaching, research and extension and her particular charge to prepare women for the future seriously. She urged her students to move beyond simple conceptions of home economics as mere preparation for domestic life. She wanted them to engage with the physical, biological and social sciences to understand the larger context for home economics work.

Such thinking, according to CSU historian James E. Hansen, pushed women college students in the early 20th century to expand the reach of home economics to include “extension and welfare work, dietetics, institutional management, laboratory research work, child development and teaching.”

News articles from the early 1900s track Allison giving lectures like “The Economic Side of Natural Living” to the Colorado Health Club and talks on domestic science to ladies clubs and at schools across Colorado. One of her talks in 1910 focused on the art of dishwashing.

Allison became the home economics department chair in 1910 and eventually dean. In this leadership role, she urged then-CSU President Charles Lory to fund lab materials for the home economics department. It took 19 years for this dream to come to fruition.

In the meantime, Allison collaborated with Lory, who gave her access to lab equipment in the physics department. She pieced together equipment to conduct research on the relationship between cooking foods in water and atmospheric pressure, but systematic control of heat, temperature and pressure was difficult to achieve.

She sought other ways to conduct high-altitude experiments and traveled across Colorado where she worked with students to test baking recipes in varied conditions, including at 11,797 feet in a shelter house on Fall River Road near Estes Park.

Early 1900s car traveling in the Rocky Mountains.
Inga Allison tested her high-altitude baking recipes at 11,797 feet at the shelter house on Fall River Road, near Estes Park, Colorado.
Archives and Special Collections, Colorado State University

But Allison realized that recipes baked at 5,000 feet in Fort Collins and Denver simply didn’t work in higher altitudes. Little advancement in baking methods occurred until 1927, when the first altitude baking lab in the nation was constructed at CSU thanks to Allison’s research. The results were tangible — and tasty — as public dissemination of altitude-specific baking practices began.

A 1932 bulletin on baking at altitude offers hundreds of formulas for success at heights ranging from 4,000 feet to over 11,000 feet. Its author, Marjorie Peterson, a home economics staff person at the Colorado Experiment Station, credits Allison for her constructive suggestions and support in the development of the booklet.

Science of high-altitude baking

As a senior food scientist in a mountain state, one of us – Caitlin Clark – advises bakers on how to adjust their recipes to compensate for altitude. Thanks to Allison’s research, bakers at high altitude today can anticipate how the lower air pressure will affect their recipes and compensate by making small adjustments.

The first thing you have to understand before heading into the kitchen is that the higher the altitude, the lower the air pressure. This lower pressure has chemical and physical effects on baking.

Air pressure is a force that pushes back on all of the molecules in a system and prevents them from venturing off into the environment. Heat plays the opposite role – it adds energy and pushes molecules to escape.

When water is boiled, molecules escape by turning into steam. The less air pressure is pushing back, the less energy is required to make this happen. That’s why water boils at lower temperatures at higher altitudes – around 200 degrees Fahrenheit in Denver compared with 212 F at sea level.

So, when baking is done at high altitude, steam is produced at a lower temperature and earlier in the baking time. Carbon dioxide produced by leavening agents also expands more rapidly in the thinner air. This causes high-altitude baked goods to rise too early, before their structure has fully set, leading to collapsed cakes and flat muffins. Finally, the rapid evaporation of water leads to over-concentration of sugars and fats in the recipe, which can cause pastries to have a gummy, undesirable texture.

Allison learned that high-altitude bakers could adjust to their environment by reducing the amount of sugar or increasing liquids to prevent over-concentration, and using less of leavening agents like baking soda or baking powder to prevent dough from rising too quickly.

Allison was one of many groundbreaking women in the early 20th century who actively supported higher education for women and advanced research in science, politics, humanities and education in Colorado.

Others included Grace Espy-Patton, a professor of English and sociology at CSU from 1885 to 1896 who founded an early feminist journal and was the first woman to register to vote in Fort Collins. Miriam Palmer was an aphid specialist and master illustrator whose work crafting hyper-realistic wax apples in the early 1900s allowed farmers to confirm rediscovery of the lost Colorado Orange apple, a fruit that has been successfully propagated in recent years.

In 1945, Allison retired as both an emerita professor and emerita dean at CSU. She immediately stepped into the role of student and took classes in Russian and biochemistry.

In the fall of 1958, CSU opened a new dormitory for women that was named Allison Hall in her honor.

“I had supposed that such a thing happened only to the very rich or the very dead,” Allison told reporters at the dedication ceremony.

Read more of our stories about Colorado.The Conversation

Tobi Jacobi, Professor of English, Colorado State University and Caitlin Clark, Senior Food Scientist at the CSU Spur Food Innovation Center, Colorado State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Perfect brownies baked at high altitude are possible thanks to Colorado’s home economics pioneer Inga Allison appeared first on theconversation.com

Continue Reading

Trending