Connect with us

The Conversation

AI search answers are the fast food of your information diet – convenient and tasty, but no substitute for good nutrition

Published

on

theconversation.com – Chirag Shah, Professor of Information Science, University of Washington – 2024-06-07 07:47:54

Fast and yummy is often less than healthy.
Zinkevych/iStock via Getty Images

Chirag Shah, University of Washington

If you have used Google lately and been lucky – or unlucky – enough to encounter an answer to your query rather than a bunch of links, you have been subjected to something called AI Overviews. This is a new core feature that Google has been rolling out, a move widely anticipated since the company’s experiments with its LaMDA large language model in 2021, and since OpenAI’s ChatGPT artificial intelligence chatbot rocketed to prominence in 2023.

a text box
Google’s knowledge panels summarize information from search results, in contrast to AI Overview, which generates answers based on its training data.
Screen capture by The Conversation, CC BY-ND

This feature is yet another addition to the increasing number of add-ons and tools being integrated into search engines like Google. Some of the notable examples include knowledge graph-driven knowledge panels, which are used to populate relevant factual information in an infobox next to search results, and featured snippets, which are blurbs excerpted from a search result and provided before the link to that page.

But what’s different about AI Overviews is that they are not simply extracted from relevant sources but generated behind the scenes by Google’s generative AI technology. The company’s goal is to give you a personalized, on-demand answer instead of a standard set of documents or even an answer box matching your query.

This seems almost magical and potentially useful in many situations. After all, people use search engines primarily to find answers and not lists of documents. But there’s more to the picture.

My colleague Emily Bender and I have written about what search engine users need, want and have. We have shown that they want not only information but also the ability to discover, learn and question what they find. In other words, users have a wide range of situations and objectives, and compressing them down to a set of links or, worse, a single answer is problematic.

Bad advice

These AI features vacuum up information from the internet and other available sources and spit out an answer based on how they are trained to associate words. A core argument against them is that they mostly remove from the equation the user’s judgment, agency and opportunity to learn.

This may be OK for many searches. Want a description of how inflation has affected grocery prices in the past five years, or a summary of what the European Union AI Act includes? AI Overviews can be a good way to cut through a lot of documents and extract those specific answers.

But people’s searching needs don’t end with factual information. They look for ideas, opinions and advice. Looking for suggestions about how to keep the cheese from sliding off your pizza? Google will tell you that you should add some glue to the sauce. Or wondering if running with scissors has any health benefits? Sure, Google will say, “it can also improve your pores and give you strength”.

Computer scientist Paulo Shakarian explains why ‘hallucinations’ – incorrect and often weird answers – are likely to continue to plague large language models and therefore tools like Google’s AI Overviews.

While a reasonable user can understand that such outrageous answers are likely to be wrong, it’s hard to detect that for factual questions.

For example, while researching the faith of U.S. presidents, Google’s AI Overviews gave the incorrect answer that Barack Obama is a Muslim. This misinformation was widely circulated and debunked years ago, but Google regurgitated it with no good way for users to learn that it is misinformation.

What about a student using Google for homework and asking which countries in Africa start with the letter K? While Kenya does meet this criteria, Google’s AI Overviews incorrectly answered that there are no such countries.

Google has acknowledged issues with AI Overviews and said it has addressed them. But the concern remains: Can you really trust any answers you receive through this service?

How to avoid AI answers

There are alternatives. You can always go back to the traditional Google search with its 10 blue links. Click on “More” in the menu – All, News, Images, Maps, Videos and More – directly below the search field at the top of the Google search page and select “Web.”

You can then do what you have likely done for decades now – sift through some of the top results, visit a few of those sites and decide for yourself. It does take a little work, but it gives you back the ability to examine multiple sites and evidence to support or refute something. More importantly, you leave open the possibilities for learning, discovery and serendipity.

AI Overviews is like fast food that gets delivered through a drive-through window – it’s quick, hot and convenient, but not the healthiest choice. Going through Google’s traditional search results is like examining a menu in a sit-down restaurant and placing an order that will take awhile to make it to your table. You can ask your server questions about those items and even request some changes to the restaurant’s offerings. It’s prepared with more care, customization and control, but also takes longer and may cost more.

These aren’t the only methods of finding information, however. There are alternatives to Google’s search engine, including specialty search tools.

For scholarly needs, Google Scholar, Semantic Scholar and CORE are helpful places to look for research papers and citations. Looking for medical information? Try PubMed, ScienceDirect and OpenMD. For legal needs, some services include Fastcase, Caselaw Access Project and CourtListener.

Concerned about privacy? Check out DuckDuckGo, Startpage and Swisscows. If you still want AI-generated answers, some of the alternatives to Google’s AI Overviews and rival Bing’s Copilot are You.com and Komo, which provide more transparency about the data they collect about you, provide greater privacy and also offer ways to opt out of having your data collected for training their AI models.

A balanced information diet

Perhaps you can’t afford to eat out at a nice restaurant or prepare every meal from scratch every time, but it’s important to avoid ending up going through a drive-through for all your nourishment. After all, you are what you eat, and in a similar vein, you are how you search.

It’s easy to fall for sensational headlines and bite-size news that lack context. But you don’t have to let that define you. You can expand the scope of how you search. It’s OK to hit the drive-through every now and then and go for AI Overviews, but it’s important to also find other more wholesome ways to fulfill your needs – for food and for information.The Conversation

Chirag Shah, Professor of Information Science, University of Washington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Why do I feel better when I wake myself up instead of relying on an alarm? A neurologist explains the science of a restful night’s sleep

Published

on

theconversation.com – Beth Ann Malow, Professor of Neurology and Pediatrics, Vanderbilt University – 2024-11-18 07:25:00

Your internal body clock can help wake you up without an alarm.

Riska/E+ via Getty Images

Beth Ann Malow, Vanderbilt University

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to curiouskidsus@theconversation.com.


Why do I feel better rested when I wake myself up than I do if my alarm or another person wakes me up? – Calleigh H., age 11, Oklahoma


We’ve all experienced this: You’re in the middle of a lovely dream. Perhaps you’re flying. As you’re soaring through the air, you meet an eagle. The eagle looks at you, opens its beak and – BEEP! BEEP! BEEP!

Your alarm goes off. Dream over, time to get up.

Many people – kids and adults alike – notice that when they wake up naturally from sleep, they feel more alert than if an alarm or another person, like a parent, wakes them up. Why is that?

I’m a neurologist who studies the brain, specifically what happens in the brain when you’re asleep. I also take care of children and adults who don’t sleep well and want to sleep better. My research involves working with parents to help them teach their children good sleep habits.

To understand how to sleep better, and why waking up naturally from sleep helps you feel more alert, you need to start by understanding sleep cycles.

The sleep cycle

The sleep cycle consists of four stages. One of these is REM, which stands for rapid eye movements. The other three are non-REM stages. When you fall asleep, you first go into a state of drowsiness called non-REM Stage 1.

This is followed by deeper stages of sleep, called non-REM stages 2 and 3. Each stage of non-REM is deeper than the one before. Then, about 90 minutes after you first fall asleep, you enter the fourth stage, which is REM sleep. This is a stage of lighter sleep where you do much of your dreaming. After a few minutes, you return to non-REM sleep again.

Segments of a circle indicate the four stages of the sleep cycle: Non-REM 1, Non-REM 2, Non-REM 3, and REM.

The four stages of the sleep cycle.

The Conversation, CC BY

These cycles repeat themselves throughout the night, with most people having four to six cycles of non-REM sleep alternating with REM sleep each night. As the night goes on, the cycles contain less non-REM sleep and more REM sleep. This is why it’s important to get enough sleep, so that the body can get enough of both REM sleep and non-REM sleep.

REM vs. non-REM sleep

How do researchers like me know that a person is in non-REM vs. REM sleep? In the sleep lab, we can tell from their brain waves, eye movements and the tension in their muscles, like in the chin. These are measured by putting sensors called electrodes on the scalp, around the eyes and on the chin.

These electrodes pick up brain activity, which varies from waves that are low in amplitude (the height of the wave) and relatively fast to waves that are high in amplitude (a taller wave) and relatively slow. When we are awake, the height of the waves is low and the waves are relatively fast. In contrast, during sleep, the waves get higher and slower.

Non-REM Stage 3 has the tallest and slowest waves of all the sleep stages. In REM sleep, brain waves are low in amplitude and relatively fast, and the eye movements are rapid, too. People need both non-REM and REM stages for a healthy brain, so they can learn and remember.

Waking up naturally

When you wake up in the morning on your own, it’s usually as you come to the end of whatever stage of sleep you were in. Think of it like getting off the train when it comes to a stop at the station. But when an alarm or someone else wakes you up, it’s like jumping off the train between stops, which can feel jolting. That’s why it’s good to wake up naturally whenever possible.

People can actually train their brains to wake up at a consistent time each day that is a natural stopping point. Brains have an internal 24-hour clock that dictates when you first start to feel sleepy and when you wake up. This is related to our circadian rhythms.

You can adjust your circadian rhythm so that you wake naturally each morning.

Training the brain to wake up at a consistent time

First, it’s important to go to bed at a consistent time that allows you to get enough sleep. If you stay up too late doing homework or looking at your phone, that can interfere with getting enough sleep and make you dependent on an alarm – or your parents – to wake you up.

Other things that can help you fall asleep at a healthy time include getting physical activity during the day and avoiding coffee, soda or other drinks or foods that contain caffeine. Physical activity increases brain chemicals that make it easier to fall asleep, while caffeine does the opposite and keeps you awake.

Second, you need to be aware of light in your environment. Light too late in the evening, including from screens, can interfere with your brain’s production of a chemical called melatonin that promotes sleep. But in the morning when you wake up, you need to be exposed to light.

Morning light helps you synchronize, or align, your circadian rhythms with the outside world and makes it easier to fall asleep at night. The easiest way to do this is to open up your shades or curtains in your room. In the winter, some people use light boxes to simulate sunlight, which helps them align their rhythms.

Benefits of a good night’s sleep

A good sleep routine entails both a consistent bedtime and wake time and regularly getting enough sleep. That usually means 9-11 hours for school-age kids who are not yet teens, and 8-10 hours for teens.

This will help you be at your best to learn at school, boost your mood, help you maintain a healthy weight and promote many other aspects of health.


Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.The Conversation

Beth Ann Malow, Professor of Neurology and Pediatrics, Vanderbilt University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Why do I feel better when I wake myself up instead of relying on an alarm? A neurologist explains the science of a restful night’s sleep appeared first on theconversation.com

Continue Reading

The Conversation

As the Taurid meteor shower passes by Earth, pseudoscience rains down – and obscures a potential real threat from space

Published

on

theconversation.com – Mark Boslough, Research Associate Professor of Earth and Planetary Sciences, University of New Mexico – 2024-11-15 07:31:00

This image of a Taurid fireball was taken in 2014 by NASA’s All Sky Fireball Network in Tullahoma, Tenn.

NASA

Mark Boslough, University of New Mexico

With the Taurid meteor shower now hitting the night skies worldwide, look for what could be a celestial treat – you might see shooting stars, and maybe even fireballs, the biggest and brightest meteors.

As the full moon begins to wane after Nov. 15, the sky will be darker, due to diminishing moonlight, so finding the meteors will get easier. That said, the best visibility for the meteors through the rest of the month will come just before moonrise each night.

Beyond the light show, there is something else that scientists as well as onlookers have long wondered about: the possibility that bigger chunks are in the Taurid meteor streams, chunks the size of boulders, buildings or even mountains.

And if that’s true, could one of those monster-sized Taurid objects collide with Earth? Could they wipe out a city, or worse? Is it possible that’s already happened, sometime in our planet’s past?

This animation simulates the motion of the hypothetical Taurid meteor swarm through space.

As a physicist who researches the risk that comets and asteroids pose to the Earth, I’m aware that this is a subject where pseudoscience often competes with actual science. So let’s try to find the line between fact and fiction.

Pig Pen, glowing tails and shooting stars

Comet Encke is the so-called parent comet of the Taurid meteors. It’s relatively small, just over 3 miles (almost 5 kilometers) in diameter, and crosses inside Earth’s orbit and back out every 3.3 years.

As Encke moves, it sheds dust wherever it goes, like the Peanuts character Pig Pen. A meteor shower occurs when that dust and debris light up while entering Earth’s atmosphere at high speeds. Ultimately, they vanish into an incandescent puff of vapor with a glowing tail, creating the illusion of a “shooting star.”

But dust isn’t all that breaks off the comet. So do bigger chunks, the size of pebbles and stones. When they collide with the air, they create the much brighter fireballs, which sometimes explode.

Against a black and white starscape, a bright spot appears in the center of the photo.

An image of comet Encke, taken by NASA’s MESSENGER spacecraft in November 2013.

NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/Southwest Research Institute

Doomsday showers

The “coherent catastrophism” hypothesis suggests that comet Encke was created when an even larger comet broke up into pieces; Encke survived as the largest piece. The hypothesis also suggests that other mountain-sized chunks broke off and coalesced into a large swarm of fragments too. If such a swarm exists, there is a possibility that those large chunks could one day hit Earth as it passes through the swarm.

But just because something might be physically possible doesn’t mean that it exists. Mainstream astronomers have rejected this theory’s most catastrophic predictions. Among other reasons, scientists have never observed high concentrations of these mountain-sized objects.

Despite the lack of evidence, researchers on the fringes of science have embraced the idea. They claim the Earth experienced a global catastrophic swarm 12,900 years ago; the impact, they say, caused continent-wide firestorms, floods and abrupt climate change that led to the mass extinction of large mammals, such as woolly mammoths, and the disappearance of early Americans known as the Clovis people.

The evidence for a catastrophic cause of these events, most of which did not happen, is lacking. Nevertheless, the idea has gained a large following and formed the basis for British author Graham Hancock’s popular TV series, “Ancient Apocalypse.”

A black and white photo of a forest of flattened trees.

This photo shows the flattened trees resulting from the Tunguska event.

Universal History Archives/Universal Images Group via Getty Images

The Tunguska event

But even outlandish ideas can have elements of truth, and there are hints that some objects – more than just dust and debris, but less than doomsday size – indeed exist in the Taurid meteor stream, and that the Earth has already encountered them.

One clue comes from an event on June 30, 1908, when an enormous explosion in the sky blew down millions of trees in Siberia. This was the Tunguska event – an airburst from an object that may have been up to 160 feet (about 50 meters) in diameter.

The collision unleashed several megatons of energy, which is roughly the equivalent of a large thermonuclear bomb. What happens is this: The incoming object penetrates deep into Earth’s atmosphere, and the dense air slows it down and heats it up until it vaporizes and explodes.

Could this object have been a Taurid? After all, the Taurids cross Earth’s orbit twice a year – not just in autumn, but also in June.

A fireball appears in the night sky.

In a 2015 photo, a glowing Taurid fireball descends over Lake Simcoe in Ontario, Canada.

Orchidpost/iStock via Getty Images Plus

Here’s the evidence: First, the descriptions of the trajectory of the Tunguska airburst, as reported by eyewitness observers, is consistent with that of an object coming from the Taurid stream.

What’s more, the pattern of blast damage on the ground beneath an airburst depends on the trajectory of the exploding object. Supercomputer simulations show that the shape of the surface blast that would be caused by an exploding Taurid object matches the pattern of fallen trees at Tunguska.

Finally, during the Taurid meteor shower in 1975, people observed large fireballs – and seismometers, previously placed on the Moon by Apollo astronauts, detected seismic events on the lunar surface. Scientists interpreted those events as impacts, presumably made by the Taurid meteors.

In 2032 and 2036, the Taurid swarm – assuming it exists – is predicted to be closer to the Earth than any time since 1975. That might mean the Moon, and perhaps the Earth, could be pelted again in those years.

There is time to figure this out. Scientists can expand their astronomical surveys to look for Tunguska-sized objects at the locations where they are predicted to be the next time they are in our vicinity.

Most scientists remain skeptical that such a swarm exists, but it’s the job of planetary defenders to investigate possible threats, even if the risk is small. After all, a Tunguska-sized object could conceivably demolish a major city and kill millions; an accurate count of objects on a potential collision course is essential.

Put doomsday scenarios and ancient apocalypses aside. The real question, and still an open one, is whether a Taurid swarm could deliver more Tunguska-sized objects than would otherwise be expected. This would mean we have underestimated the risk from future airbursts.The Conversation

Mark Boslough, Research Associate Professor of Earth and Planetary Sciences, University of New Mexico

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post As the Taurid meteor shower passes by Earth, pseudoscience rains down – and obscures a potential real threat from space appeared first on theconversation.com

Continue Reading

The Conversation

Knee problems tend to flare up as you age – an orthopedic specialist explains available treatment options

Published

on

theconversation.com – Angie Brown, Clinical Associate Professor of Physical Therapy, Quinnipiac University – 2024-11-15 07:32:00

Knee problems can hinder mobility and erode your quality of life.

Witthaya Prasongsin/Moment via Getty Images

Angie Brown, Quinnipiac University

Knee injuries are common in athletes, accounting for 41% of all athletic injuries. But knee injuries aren’t limited to competitive athletes. In our everyday lives, an accident or a quick movement in the wrong direction can injure the knee and require medical treatment. A quarter of the adult population worldwide experiences knee pain each year

As a physical therapist and board-certified orthopedic specialist, I help patients of all ages with knee injuries and degenerative conditions.

Your knees have a huge impact on your mobility and overall quality of life, so it’s important to prevent knee problems whenever possible and address pain in these joints with appropriate treatments.

Healthy knees

The knee joint bones consist of the femur, tibia and patella. As in all healthy joints, smooth cartilage covers the surfaces of the bones, forming the joints and allowing for controlled movement.

diagram of a healthy knee

A healthy knee.

Inna Kharlamova/iStock/Getty Images Plus via Getty Images

Muscles, ligaments and tendons further support the knee joint. The anterior cruciate ligament, commonly known as the ACL, and posterior cruciate ligament, or PCL, provide internal stability to the knee. In addition, two tough pieces of fibrocartilage, called menisci, lie inside the joint, providing further stability and shock absorption.

All these structures work together to enable the knee to move smoothly and painlessly throughout everyday movement, whether bending to pick up the family cat or going for a run.

Causes of knee pain

Two major causes of knee pain are acute injury and osteoarthritis.

Ligaments such as the ACL and PCL can be stressed and torn when a shear force occurs between the femur and tibia. ACL injuries often occur when athletes land awkwardly on the knee or quickly pivot on a planted foot. Depending on the severity of the injury, these patients may undergo physical therapy, or they may require surgery for repair or replacement.

PCL injuries are less common. They occur when the tibia experiences a posterior or backward force. This type of injury is common in car accidents when the knee hits the dashboard, or when patients fall forward when walking up stairs.

The menisci can also experience degeneration and tearing from shear and rotary forces, especially during weight-bearing activities. These types of injuries often require rehabilitation through physical therapy or surgery.

Knee pain can also result from injury or overuse of the muscles and tendons surrounding the knee, including the quadriceps, hamstrings and patella tendon.

Both injuries to and overuse of the knee can lead to degenerative changes in the joint surfaces, known as osteoarthritis. Osteoarthritis is a progressive disease that can lead to pain, swelling and stiffness. This disease affects the knees of over 300 million people worldwide, most often those 50 years of age and up. American adults have a 40% chance of developing osteoarthritis that affects their daily lives, with the knee being the most commonly affected joint.

Age is also a factor in knee pain. The structure and function of your joints change as you age. Cartilage starts to break down, your body produces less synovial fluid to lubricate your joints, and muscle strength and flexibility decrease. This can lead to painful, restricted movement in the joint.

Risk factors

There are some risk factors for knee osteoarthritis that you cannot control, such as genetics, age, sex and your history of prior injuries.

Fortunately, there are several risk factors you can control that can predispose you to knee pain and osteoarthritis specifically. The first is excessive weight. Based on studies between 2017 and 2020, nearly 42% of all adult Americans are obese. This obesity is a significant risk factor for diabetes and osteoarthritis and can also play a role in other knee injuries.

A lack of physical activity is another risk, with 1 in 5 U.S. adults reporting that they’re inactive outside of work duties. This can result in less muscular support for the knee and more pressure on the joint itself.

An inflammatory diet also adds to the risk of knee pain from osteoarthritis. Research shows that the average American diet, often high in sugar and fat and low in fiber, can lead to changes to the gut microbiome that contribute to osteoarthritis pain and inflammation.

Preventing knee pain

Increasing physical activity is one of the key elements to preventing knee pain. Often physical therapy intervention for patients with knee osteoarthritis focuses on strengthening the knee to decrease pain and support the joint during movement.

The U.S. Department of Health and Human Services recommends that adults spend at least 150 to 300 minutes per week on moderate-intensity, or 75 to 150 minutes per week on vigorous-intensity aerobic physical activity. These guidelines do not change for adults who already have osteoarthritis, although their exercise may require less weight-bearing activities, such as swimming, biking or walking.

The agency also recommends that all adults do some form of resistance training at least two or more days a week. Adults with knee osteoarthritis particularly benefit from quadriceps-strengthening exercises, such as straight leg raises.

Treatments for knee pain

Conservative treatment of knee pain includes anti-inflammatory and pain medications and physical therapy.

Medical treatment for knee osteoarthritis may include cortisone injections to decrease inflammation or hyaluronic acid injections, which help lubricate the joint. The relief from these interventions is often temporary, as they do not stop the progression of the disease. But they can delay the need for surgery by one to three years on average, depending on the number of injections.

Physical therapy is generally a longer-lasting treatment option for knee pain. Physical therapy treatment leads to more sustained pain reduction and functional improvements when compared with cortisone injections treatment and some meniscal repairs.

Patients with osteoarthritis often benefit from total knee replacement, a surgery with a high success rate and lasting results.

Surgical interventions for knee pain include the repair, replacement or removal of the ACL, PCL, menisci or cartilage. When more conservative approaches fail, patients with osteoarthritis may benefit from a partial or total knee replacement to allow more pain-free movement. In these procedures, one or both sides of the knee joint are replaced by either plastic or metal components. Afterward, patients attend physical therapy to aid in the return of range of motion.

Although there are risks with any surgery, most patients who undergo knee replacement benefit from decreased pain and increased function, with 90% of all replacements lasting more than 15 years. But not all patients are candidates for such surgeries, as a successful outcome depends on the patient’s overall health and well-being.

New treatments on the horizon

New developments for knee osteoarthritis are focused on less invasive therapies. Recently, the U.S. Food and Drug Administration approved a new implant that acts as a shock absorber. This requires a much simpler procedure than a total knee replacement.

Other promising interventions include knee embolization, a procedure in which tiny particles are injected into the arteries near the knee to decrease blood flow to the area and reduce inflammation near the joint. Researchers are also looking into injectable solutions derived from human bodies, such as plasma-rich protein and fat cells, to decrease inflammation and pain from osteoarthritis. Human stem cells and their growth factors also show potential in treating knee osteoarthritis by potentially improving muscle atrophy and repairing cartilage.

Further research is needed on these novel interventions. However, any intervention that holds promise to stop or delay osteoarthritis is certainly encouraging for the millions of people afflicted with this disease.The Conversation

Angie Brown, Clinical Associate Professor of Physical Therapy, Quinnipiac University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Knee problems tend to flare up as you age – an orthopedic specialist explains available treatment options appeared first on theconversation.com

Continue Reading

Trending