Connect with us

The Conversation

Comet Tsuchinshan-ATLAS is a Halloween visitor from the spooky Oort Cloud − the invisible bubble that’s home to countless space objects

Published

on

theconversation.com – James Wray, Professor of Earth and Atmospheric Sciences, Georgia Institute of Technology – 2024-10-11 12:36:00

The human mind may find it difficult to conceptualize: a cosmic cloud so colossal it surrounds the Sun and eight planets as it extends trillions of miles into deep space.

The spherical shell known as the Oort Cloud is, for all practical purposes, invisible. Its constituent particles are spread so thinly, and so far from the light of any star, including the Sun, that astronomers simply cannot see the cloud, even though it envelops us like a blanket.

It is also theoretical. Astronomers infer the Oort Cloud is there because it’s the only logical explanation for the arrival of a certain class of comets that sporadically visit our solar system. The cloud, it turns out, is basically a gigantic reservoir that may hold billions of icy celestial bodies.

Two of those bodies will pass by Earth in the days leading up to Halloween. Tsuchinshan-ATLAS, also known as Comet C/2023 A3, will be at its brightest, and likely visible to the naked eye, for a week or two after Oct. 12, the day it’s closest to Earth – just look to the western sky shortly after sunset. As the days pass, the comet will get fainter and move to a higher part of the sky.

A view of comet Tsuchinshan-ATLAS from the International Space Station.

The second comet, C/2024 S1 (ATLAS), just discovered on Sept. 27, should be visible around the end of October. The comet will pass closest to Earth on Oct. 24 – look low in the eastern sky just before sunrise. Then, after swinging around the Sun, the comet may reappear in the western night sky right around Halloween. It’s possible, however, that it could disintegrate, in part or in whole, as sometimes happens when comets pass by the Sun – and this one will come within 1 million miles (1.6 million kilometers) of our star.

As a planetary astronomer, I’m particularly curious about the Oort Cloud and the icy bodies inhabiting it. The Cloud’s residents may be a reason why life ignited on Earth; crashing on our planet eons ago, these ice bodies may have supplied at least some of the water that all life requires. At the same time, these same objects pose an ever-present threat to Earth’s continuation – and our survival.

Billions of comets

If an Oort Cloud object finds its way to the inner solar system, its ices vaporize. That process produces a tail of debris that becomes visible as a comet.

Some of these bodies, known as long-period comets, have orbits of hundreds, thousands or even millions of years, like Tsuchinshan-ATLAS. This is unlike the so-called short-period comets, which do not visit the Oort Cloud and have comparatively quick orbits. Halley’s comet, which cuts a path through the solar system and orbits the Sun every 76 years or so, is one of them.

The 20th-century Dutch astronomer Jan Oort, intrigued by the long-period comets, wrote a paper on them in 1950. He noted about 20 of the comets had an average distance from the Sun that was more than 10,000 astronomical units. This was astounding; just one AU is the distance of the Earth from the Sun, which is about 93 million miles. Multiply 93 million by 10,000, and you’ll find these comets come from over a trillion miles away. What’s more, Oort suggested, they were not necessarily the cloud’s outermost objects.

Nearly 75 years after Oort’s paper, astronomers still can’t directly image this part of space. But they do estimate the Oort Cloud spans up to 10 trillion miles from the Sun, which is almost halfway to Proxima Centauri, the next closest star.

The long-period comets spend most of their time at those vast distances, making only brief and rapid visits close to the Sun as they come in from all directions. Oort speculated the cloud contained 100 billion of these icy objects. That may be as numerous as the number of stars in our galaxy.

How did they get there? Oort suggested, and modern simulations have confirmed, that these icy bodies could have initially formed near Jupiter, the solar system’s largest planet. Perhaps these objects had their orbits around the Sun disturbed by Jupiter – similar to how NASA spacecraft bound for destinations from Saturn to Pluto have typically swung by the giant planet to accelerate their journeys outward.

Some of these objects would have escaped the solar system permanently, becoming interstellar objects. But others would have ended up with orbits like those of the long-period comets.

An artistic illustration of the solar system and the Oort Cloud.

An illustration of the solar system and the Oort Cloud. The numbers on the graph depict AUs, or astronomical units. Note the location of Voyager 2, which will take another 30,000 years to fly out of the Cloud.
NASA

Threats to Earth

Long-period comets present a particular potential danger to Earth. Because they are so far from our Sun, their orbits are readily altered by the gravity of other stars. That means scientists have no idea when or where one will appear, until it does, suddenly. By then, it’s typically closer than Jupiter and moving rapidly, at tens of thousands of miles per hour. Indeed, the fictional comet that doomed Earth in the film “Don’t Look Upcame from the Oort Cloud.

New Oort Cloud comets are discovered all the time, a dozen or so per year in recent years. The odds of any of them colliding with Earth are extremely low. But it is possible. The recent success of NASA’s DART mission, which altered the orbit of a small asteroid, demonstrates one plausible approach to fending off these small bodies. But that mission was developed after years of studying its target. A comet from the Oort Cloud may not offer that much time – maybe just months, weeks or even days.

Or no time at all. ’Oumuamua, the odd little object that visited our solar system in 2017, was discovered not before but after its closest approach to Earth. Although ’Oumuamua is an interstellar object, and not from the Oort Cloud, the proposition still applies; one of these objects could sneak up on us, and the Earth would be defenseless.

One way to prepare for these objects is to better understand their basic properties, including their size and composition. Toward this end, my colleagues and I work to characterize new long-period comets. The largest known one, Bernardinelli–Bernstein, discovered just three years ago, is roughly 75 miles (120 kilometers) across. Most known comets are much smaller, from one to a few miles, and some smaller ones are too faint for us to see. But newer telescopes are helping. In particular, the Rubin Observatory’s decade-long Legacy Survey of Space and Time, starting up in 2025, may double the list of known Oort Cloud comets, which now stands at about 4,500.

The unpredictability of these objects makes them a challenging target for spacecraft, but the European Space Agency is preparing a mission to do just that: Comet Interceptor. With a launch planned for 2029, the probe will park in space until a suitable target from the Oort Cloud appears. Studying one of these ancient and pristine objects could offer scientists clues about the origins of the solar system.

As for the comets now in Earth’s vicinity, it’s OK to look up. Unlike the comet in the DiCaprio movie, these two will not crash into the Earth. The nearest Tsuchinshan-ATLAS will get to us is about 44 million miles (70 million kilometers); C/2024 S1 (ATLAS), about 80 million miles (130 million kilometers). Sounds like a long way, but in space, that’s a near miss.

Read More

The post Comet Tsuchinshan-ATLAS is a Halloween visitor from the spooky Oort Cloud − the invisible bubble that’s home to countless space objects appeared first on theconversation.com

The Conversation

In Disney’s ‘Moana,’ the characters navigate using the stars, just like real Polynesian explorers − an astronomer explains how these methods work

Published

on

theconversation.com – Christopher Palma, Teaching Professor, Department of Astronomy & Astrophysics, Penn State – 2024-12-20 07:17:00

Wayfarers around the world have used the stars to navigate the sea.
Wirestock/iStock via Getty Images Plus

Christopher Palma, Penn State

If you have visited an island like one of the Hawaiian Islands, Tahiti or Easter Island, also known as Rapa Nui, you may have noticed how small these land masses appear against the vast Pacific Ocean. If you’re on Hawaii, the nearest island to you is more than 1,000 miles (1,600 kilometers) away, and the coast of the continental United States is more than 2,000 miles (3,200 kilometers) away. To say these islands are secluded is an understatement.

For me, watching the movie “Moana” in 2016 was eye-opening. I knew that Polynesian people traveled between a number of Pacific islands, but seeing Moana set sail on a canoe made me realize exactly how small those boats are compared with what must have seemed like an endless ocean. Yet our fictional hero went on this journey anyway, like the countless real-life Polynesian voyagers upon which she is based.

Oceania as shown from the ISS
Islands in Polynesia can be thousands of miles apart.
NASA

As an astronomer, I have been teaching college students and visitors to our planetarium how to find stars in our sky for more than 20 years. As part of teaching appreciation for the beauty of the sky and the stars, I want to help people understand that if you know the stars well, you can never get lost.

U.S. Navy veterans learned the stars in their navigation courses, and European cultures used the stars to navigate, but the techniques of Polynesian wayfinding shown in Moana brought these ideas to a very wide audience.

The movie Moana gave me a new hook – pun not intended – for my planetarium shows and lessons on how to locate objects in the night sky. With “Moana 2” out now, I am excited to see even more astronomy on the big screen and to figure out how I can build new lessons using the ideas in the movie.

The North Star

Have you ever found the North Star, Polaris, in your sky? I try to spot it every time I am out observing, and I teach visitors at my shows to use the “pointer stars” in the bowl of the Big Dipper to find it. These two stars in the Big Dipper point you directly to Polaris.

If you are facing Polaris, then you know you are facing north. Polaris is special because it is almost directly above Earth’s North Pole, and so everyone north of the equator can see it year-round in exactly the same spot in their sky.

It’s a key star for navigation because if you measure its height above your horizon, that tells you how far you are north of Earth’s equator. For the large number of people who live near 40 degrees north of the equator, you will see Polaris about 40 degrees above your horizon.

If you live in northern Canada, Polaris will appear higher in your sky, and if you live closer to the equator, Polaris will appear closer to the horizon. The other stars and constellations come and go with the seasons, though, so what you see opposite Polaris in the sky will change every month.

Look for the Big Dipper to find the North Star, Polaris.

You can use all of the stars to navigate, but to do that you need to know where to find them on every night of the year and at every hour of the night. So, navigating with stars other than Polaris is more complicated to learn.

Maui’s fishhook

At the end of June, around 11 p.m., a bright red star might catch your eye if you look directly opposite from Polaris. This is the star Antares, and it is the brightest star in the constellation Scorpius, the Scorpion.

If you are a “Moana” fan like me and the others in my family, though, you may know this group of stars by a different name – Maui’s fishhook.

If you are in the Northern Hemisphere, Scorpius may not fully appear above your horizon, but if you are on a Polynesian island, you should see all of the constellation rising in the southeast, hitting its highest point in the sky when it is due south, and setting in the southwest.

Astronomers and navigators can measure latitude using the height of the stars, which Maui and Moana did in the movie using their hands as measuring tools.

The easiest way to do this is to figure out how high Polaris is above your horizon. If you can’t see it at all, you must be south of the equator, but if you see Polaris 5 degrees (the width of three fingers at arm’s length) or 10 degrees above your horizon (the width of your full fist held at arm’s length), then you are 5 degrees or 10 degrees north of the equator.

The other stars, like those in Maui’s fishhook, will appear to rise, set and hit their highest point at different locations in the sky depending on where you are on the Earth.

Polynesian navigators memorized where these stars would appear in the sky from the different islands they sailed between, and so by looking for those stars in the sky at night, they could determine which direction to sail and for how long to travel across the ocean.

Today, most people just pull out their phones and use the built-in GPS as a guide. Ever since “Moana” was in theaters, I see a completely different reaction to my planetarium talks about using the stars for navigation. By accurately showing how Polynesian navigators used the stars to sail across the ocean, Moana helps even those of us who have never sailed at night to understand the methods of celestial navigation.

The first “Moana” movie came out when my son was 3 years old, and he took an instant liking to the songs, the story and the scenery. There are many jokes about parents who dread having to watch a child’s favorite over and over again, but in my case, I fell in love with the movie too.

Since then, I have wanted to thank the storytellers who made this movie for being so careful to show the astronomy of navigation correctly. I also appreciated that they showed how Polynesian voyagers used the stars and other clues, such as ocean currents, to sail across the huge Pacific Ocean and land safely on a very small island thousands of miles from their home.The Conversation

Christopher Palma, Teaching Professor, Department of Astronomy & Astrophysics, Penn State

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post In Disney’s ‘Moana,’ the characters navigate using the stars, just like real Polynesian explorers − an astronomer explains how these methods work appeared first on theconversation.com

Continue Reading

The Conversation

Listening for the right radio signals could be an effective way to track small drones

Published

on

theconversation.com – Iain Boyd, Director of the Center for National Security Initiatives and Professor of Aerospace Engineering Sciences, University of Colorado Boulder – 2024-12-17 17:28:00

Small drones can be hard to track at night.
Kevin Carter/Getty Images

Iain Boyd, University of Colorado Boulder

The recent spate of unidentified drone sightings in the U.S., including some near sensitive locations such as airports and military installations, has caused significant public concern.

Some of this recent increase in activity may be related to a September 2023 change in U.S. Federal Aviation Administration regulations that now allow drone operators to fly at night. But most of the sightings are likely airplanes or helicopters rather than drones.

The inability of the U.S. government to definitively identify the aircraft in the recent incidents, however, has some people wondering, why can’t they?

I am an engineer who studies defense systems. I see radio frequency sensors as a promising approach to detecting, tracking and identifying drones, not least because drone detectors based on the technology are already available. But I also see challenges to using the detectors to comprehensively spot drones flying over American communities.

How drones are controlled

Operators communicate with drones from a distance using radio frequency signals. Radio frequency signals are widely used in everyday life such as in garage door openers, car key fobs and, of course, radios. Because the radio spectrum is used for so many different purposes, it is carefully regulated by the Federal Communications Commission.

Drone communications are only allowed in narrow bands around specific frequencies such as at 5 gigahertz. Each make and model of a drone uses unique communication protocols coded within the radio frequency signals to interpret instructions from an operator and to send data back to them. In this way, a drone pilot can instruct the drone to execute a flight maneuver, and the drone can inform the pilot where it is and how fast it is flying.

Identifying drones by radio signals

Radio frequency sensors can listen in to the well-known drone frequencies to detect communication protocols that are specific to each particular drone model. In a sense, these radio frequency signals represent a unique fingerprint of each type of drone.

In the best-case scenario, authorities can use the radio frequency signals to determine the drone’s location, range, speed and flight direction. These radio frequency devices are called passive sensors because they simply listen out for and receive signals without taking any active steps. The typical range limit for detecting signals is about 3 miles (4.8 kilometers) from the source.

These sensors do not represent advanced technology, and they are readily available. So, why haven’t authorities made wider use of them?

Drones were all the buzz in the Northeast at the end of 2024.

Challenges to using radio frequency sensors

While the monitoring of radio frequency signals is a promising approach to detecting and identifying drones, there are several challenges to doing so.

First, it’s only possible for a sensor to obtain detailed information on drones that the sensor knows the communication protocols for. Getting sensors that can detect a wide range of drones will require coordination between all drone manufacturers and some central registration entity.

In the absence of information that makes it possible to decode the radio frequency signals, all that can be inferred about a drone is a rough idea of its location and direction. This situation can be improved by deploying multiple sensors and coordinating their information.

Second, the detection approach works best in “quiet” radio frequency environments where there are no buildings, machinery or people. It’s not easy to confidently attribute the unique source of a radio frequency signal in urban settings and other cluttered environments. Radio frequency signals bounce off all solid surfaces, making it difficult to be sure where the original signal came from. Again, the use of multiple sensors around a particular location, and careful placement of those sensors, can help to alleviate this issue.

Third, a major part of the concern over the inability to detect and identify drones is that they may be operated by criminals or terrorists. If drone operators with malicious intent know that an area targeted for a drone operation is being monitored by radio frequency sensors, they may develop effective countermeasures. For example, they may use signal frequencies that lie outside the FCC-regulated parameters, and communication protocols that have not been registered. An even more effective countermeasure is to preprogram the flight path of a drone to completely avoid the use of any radio frequency communications between the operator and the drone.

Finally, widespread deployment of radio frequency sensors for tracking drones would be logistically complicated and financially expensive. There are likely thousands of locations in the U.S. alone that might require protection from hostile drone attacks. The cost of deploying a fully effective drone detection system would be significant.

There are other means of detecting drones, including radar systems and networks of acoustic sensors, which listen for the unique sounds drones generate. But radar systems are relatively expensive, and acoustic drone detection is a new technology.

The way forward

It was almost guaranteed that at some point the problem of unidentified drones would arise. People are operating drones more and more in regions of the airspace that have previously been very sparsely populated.

Perhaps the recent concerns over drone sightings are a wake-up call. The airspace is only going to become much more congested in the coming years as more consumers buy drones, drones are used for more commercial purposes, and air-taxis come into use. There’s only so much that drone detection technologies can do, and it might become necessary for the FAA to tighten regulation of the nation’s airspace by, for example, requiring drone operators to submit detailed flight plans.

In the meantime, don’t be too quick to assume those blinking lights you see in the night sky are drones.The Conversation

Iain Boyd, Director of the Center for National Security Initiatives and Professor of Aerospace Engineering Sciences, University of Colorado Boulder

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Listening for the right radio signals could be an effective way to track small drones appeared first on theconversation.com

Continue Reading

The Conversation

Vaccine misinformation distorts science – a biochemist explains how RFK Jr. and his lawyer’s claims threaten public health

Published

on

theconversation.com – Mark R. O’Brian, Professor and Chair of Biochemistry, University at Buffalo – 2024-12-17 07:01:00

Many fatal childhood illnesses can be prevented with vaccination.
Westend61/Getty Images

Mark R. O’Brian, University at Buffalo

Vaccinations provide significant protection for the public against infectious diseases and substantially reduce health care costs. Therefore, it is noteworthy that President-elect Donald Trump wants Robert F. Kennedy Jr., a leading critic of childhood vaccination, to be secretary of Health and Human Services.

Doctors, scientists and public health researchers have expressed concerns that Kennedy would turn his views into policies that could undermine public health. As a case in point, news reports have highlighted how Kennedy’s lawyer, Aaron Siri, has in recent years petitioned the Food and Drug Administration to withdraw or suspend approval of numerous vaccines over alleged safety concerns.

I am a biochemist and molecular biologist studying the roles microbes play in health and disease. I also teach medical students and am interested in how the public understands science.

Here are some facts about vaccines that Kennedy and Siri get wrong:

Vaccines are effective and safe

Public health data from 1974 to the present conclude that vaccines have saved at least 154 million lives worldwide over the past 50 years. Vaccines are also continually monitored for safety in the U.S.

Nevertheless, the false claim that vaccines cause autism persists despite study after study of large populations throughout the world showing no causal link between them.

Claims about the dangers of vaccines often come from misrepresenting scientific research papers. In an interview with podcaster Joe Rogan, Kennedy incorrectly cited studies allegedly showing vaccines cause massive brain inflammation in laboratory monkeys, and that the hepatitis B vaccine increases autism rates in children by over 1,000-fold compared with unvaccinated kids. Those studies make no such claims.

In the same interview, Kennedy also made the unusual claim that a 2002 vaccine study included a control group of children 6 months of age and younger who were fed mercury-contaminated tuna sandwiches. No sandwiches are mentioned in that study.

Similarly, Siri filed a petition in 2022 to withdraw approval of a polio vaccine based on alleged safety concerns. The vaccine in question is made from an inactivated form of the polio virus, which is safer than the previously used live attenuated vaccine. The inactivated vaccine is made from polio virus cultured in the Vero cell line, a type of cell that researchers have been safely using for various medical applications since 1962. While the petition uses provocative language comparing this cell line to cancer cells, it does not claim that it causes cancer.

Gloved hands of clinician placing band-aid on child's arm, a syringe and vaccine vial beside them
Vaccines are continuously monitored for safety before and long after they’re made available to the general public.
Elena Zaretskaya/Moment via Getty Images

Vaccines undergo the same approval process as other drugs

Clinical trials for vaccines and other drugs are blinded, randomized and placebo-controlled studies. For a vaccine trial, this means that participants are randomly divided into one group that receives the vaccine and a second group that receives a placebo saline solution. The researchers carrying out the study, and sometimes the participants themselves, do not know who has received the vaccine or the placebo until the study has finished. This eliminates bias.

Results are published in the public domain. For example, vaccine trial data for COVID-19, human papilloma virus, rotavirus and hepatitis B are available for anyone to access.

Aluminum adjuvants help boost immunity

Kennedy is co-counsel with a law firm that is suing the pharmaceutical company Merck based in part on the unfounded assertion that the aluminum in one of its vaccines causes neurological disease. Aluminum is added to many vaccines as an adjuvant to strengthen the body’s immune response to the vaccine, thereby enhancing the body’s defense against the targeted microbe.

The law firm’s claim is based on a 2020 report showing that brain tissue from some patients with Alzheimer’s disease, autism and multiple sclerosis have elevated levels of aluminum. The authors of that study do not assert that vaccines are the source of the aluminum, and vaccines are unlikely to be the culprit.

Notably, the brain samples analyzed in that study were from 47- to 105-year-old patients. Most people are exposed to aluminum primarily through their diets, and aluminum is eliminated from the body within days. Therefore, aluminum exposure from childhood vaccines is not expected to persist in those patients.

Ironically, Kennedy’s lawyer, Siri, wants the FDA to withdraw some vaccines for containing less aluminum than stated by the manufacturer.

Vaccine manufacturers are liable for injury or death

Kennedy’s lawsuit against Merck contradicts his insistence that vaccine manufacturers are fully immune from litigation.

His claim is based on an incorrect interpretation of the National Vaccine Injury Compensation Program, or VICP. The VICP is a no-fault federal program created to reduce frivolous lawsuits against vaccine manufacturers, which threaten to cause vaccine shortages and a resurgence of vaccine-preventable disease.

A person claiming injury from a vaccine can petition the U.S. Court of Federal Claims through the VICP for monetary compensation. If the VICP petition is denied, the claimant can then sue the vaccine manufacturer.

Gloved hand picking up vaccine vial among a tray of vaccine vials
Drug manufacturers are liable for any vaccine-related death or injury.
Andreas Ren Photography Germany/Image Source via Getty Images

The majority of cases resolved under the VICP end in a negotiated settlement between parties without establishing that a vaccine was the cause of the claimed injury. Kennedy and his law firm have incorrectly used the payouts under the VICP to assert that vaccines are unsafe.

The VICP gets the vaccine manufacturer off the hook only if it has complied with all requirements of the Federal Food, Drug and Cosmetic Act and exercised due care. It does not protect the vaccine maker from claims of fraud or withholding information regarding the safety or efficacy of the vaccine during its development or after approval.

Good nutrition and sanitation are not substitutes for vaccination

Kennedy asserts that populations with adequate nutrition do not need vaccines to avoid infectious diseases. While it is clear that improvements in nutrition, sanitation, water treatment, food safety and public health measures have played important roles in reducing deaths and severe complications from infectious diseases, these factors do not eliminate the need for vaccines.

After World War II, the U.S. was a wealthy nation with substantial health-related infrastructure. Yet, Americans reported an average of 1 million cases per year of now-preventable infectious diseases.

Vaccines introduced or expanded in the 1950s and 1960s against diseases like diphtheria, pertussis, tetanus, measles, polio, mumps, rubella and Haemophilus influenza B have resulted in the near or complete eradication of those diseases.

It’s easy to forget why many infectious diseases are rarely encountered today: The success of vaccines does not always tell its own story. RFK Jr.’s potential ascent to the role of secretary of Health and Human Services will offer up ample opportunities to retell this story and counter misinformation.

This is an updated version of an article originally published on July 26, 2024.The Conversation

Mark R. O’Brian, Professor and Chair of Biochemistry, University at Buffalo

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Vaccine misinformation distorts science – a biochemist explains how RFK Jr. and his lawyer’s claims threaten public health appeared first on theconversation.com

Continue Reading

Trending