fbpx
Connect with us

The Conversation

Retaining flavor while removing caffeine − a chemist explains the chemistry behind decaf coffee

Published

on

theconversation.com – Michael W. Crowder, Professor of Chemistry and Biochemistry, Miami University – 2024-07-23 07:13:15
Several processes can take most of the caffeine out of coffee.
AP Photo/John Minchillo

Michael W. Crowder, Miami University

For many people, the aroma of freshly brewed coffee is the start of a great day. But caffeine can cause headaches and jitters in others. That’s why many people reach for a decaffeinated cup instead.

I’m a chemistry professor who has taught lectures on why chemicals dissolve in some liquids but not in others. The processes of decaffeination offer great real- examples of these chemistry concepts. Even the best decaffeination method, however, does not remove all of the caffeine – about 7 milligrams of caffeine usually remain in an 8-ounce cup.

Producers decaffeinating their coffee want to the caffeine while retaining all – or at least most – of the other chemical aroma and flavor compounds. Decaffeination has a rich history, and now almost all coffee producers use one of three common methods.

Advertisement

All these methods, which are also used to make decaffeinated tea, start with green, or unroasted, coffee beans that have been premoistened. Using roasted coffee beans would result in a coffee with a very different aroma and because the decaffeination steps would remove some flavor and odor compounds produced during roasting.

The carbon dioxide method

In the relatively new carbon dioxide method, developed in the early 1970s, producers use high-pressure CO₂ to extract caffeine from moistened coffee beans. They pump the CO₂ into a sealed vessel containing the moistened coffee beans, and the caffeine molecules dissolve in the CO₂.

Once the caffeine-laden CO₂ is separated from the beans, producers pass the CO₂ mixture either through a container of water or over a bed of activated carbon. Activated carbon is carbon that’s been heated up to high temperatures and exposed to steam and oxygen, which creates pores in the carbon. This step filters out the caffeine, and most likely other chemical compounds, some of which affect the flavor of the coffee.

These compounds either bind in the pores of the activated carbon or they stay in the water. Producers dry the decaffeinated beans using heat. Under the heat, any remaining CO₂ evaporates. Producers can then repressurize and reuse the same CO₂.

Advertisement

This method removes 96% to 98% of the caffeine, and the resulting coffee has only minimal CO₂ residue.

This method, which requires expensive equipment for making and handling the CO₂, is extensively used to decaffeinate commercial-grade, or supermarket, coffees.

Swiss water process

The Swiss water method, initially used commercially in the early 1980s, uses hot water to decaffeinate coffee.

Initially, producers soak a batch of green coffee beans in hot water, which extracts both the caffeine and other chemical compounds from the beans.

Advertisement

It’s kind of like what happens when you brew roasted coffee beans – you place dark beans in clear water, and the chemicals that cause the coffee’s dark color leach out of the beans into the water. In a similar way, the hot water pulls the caffeine from not yet decaffeinated beans.

During the soaking, the caffeine concentration is higher in the coffee beans than in the water, so the caffeine moves into the water from the beans. Producers then take the beans out of the water and placed them into fresh water, which has no caffeine in it – so the repeats, and more caffeine moves out of the beans and into the water. The producers repeat this process, up to 10 times, until there’s hardly any caffeine left in the beans.

The resulting water, which now contains the caffeine and any flavor compounds that dissolved out from the beans, gets passed through activated charcoal filters. These trap caffeine and other similarly sized chemical compounds, such as sugars and organic compounds called polyamines, while allowing most of the other chemical compounds to remain in the filtered water.

Producers then use the filtered water – saturated with flavor but devoid of most of the caffeine – to soak a new batch of coffee beans. This step lets the flavor compounds lost during the soaking process reenter the beans.

Advertisement
This animation shows the steps to the Swiss water process.

The Swiss water process is prized for its chemical- approach and its ability to preserve most of the coffee’s natural flavor. This method has been shown to remove 94% to 96% of the caffeine.

Solvent-based methods

This traditional and most common approach, first done in the early 1900s, uses organic solvents, which are liquids that dissolve organic chemical compounds such as caffeine. Ethyl acetate and methylene chloride are two common solvents used to extract caffeine from green coffee beans. There are two main solvent-based methods.

In the direct method, producers soak the moist beans directly in the solvent or in a water solution containing the solvent.

The solvent extracts most of the caffeine and other chemical compounds with a similar solubility to caffeine from the coffee beans. The producers then remove the beans from the solvent after about 10 hours and dry them.

Advertisement

In the indirect method, producers soak the beans in hot water for a few hours and then take them out. They then treat the water with solvent to remove caffeine from the water. Methylene chloride, the most common solvent, does not dissolve in the water, so it forms a layer on top of the water. The caffeine dissolves better in methylene chloride than in water, so most of the caffeine stays up in the methylene chloride layer, which producers can separate from the water.

A diagram showing some of the ways to decaffeinate coffee.
A few chemical processes can remove the caffeine from coffee beans.
Andy Brunning/Compound Interest, CC BY-NC

As in the Swiss water method, the producers can reuse the “caffeine-free” water, which may return some of the flavor compounds in the first step.

These methods remove about 96% to 97% of the caffeine.

Is decaf coffee safe to drink?

One of the common solvents, ethyl acetate, naturally in many foods and beverages. It’s considered a safe chemical for decaffeination by the Food and Drug Administration.

The FDA and the Occupational Safety and Administration have deemed methylene chloride unsafe to consume at concentrations above 10 milligrams per kilogram of your body weight. However, the amount of residual methylene chloride found in roasted coffee beans is very small – about 2 to 3 milligrams per kilogram. It’s well under the FDA’s limits.

Advertisement

OSHA and its European counterparts have strict workplace rules to minimize methylene chloride exposure for workers involved in the decaffeination process.

After producers decaffeinate coffee beans using methylene chloride, they steam the beans and dry them. Then the coffee beans are roasted at high temperatures. During the steaming and roasting process, the beans get hot enough that residual methylene chloride evaporates. The roasting step also produces new flavor chemicals from the of chemicals into other chemical compounds. These give coffee its distinctive flavor.

Plus, most people brew their coffee at between 190 F to 212 F, which is another for methylene chloride to evaporate.

Retaining aroma and flavor

It’s chemically impossible to dissolve out only the caffeine without also dissolving out other chemical compounds in the beans, so decaffeination inevitably removes some other compounds that contribute to the aroma and flavor of your cup of coffee.

Advertisement

But some techniques, like the Swiss water process and the indirect solvent method, have steps that may reintroduce some of these extracted compounds. These approaches probably can’t return all the extra compounds back to the beans, but they may add some of the flavor compounds back.

Thanks to these processes, you can have that delicious cup of coffee without the caffeine – unless your waiter accidentally switches the pots.The Conversation

Michael W. Crowder, Professor of Chemistry and Biochemistry, Miami University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

Advertisement

The post Retaining flavor while removing caffeine − a chemist explains the chemistry behind decaf coffee appeared first on theconversation.com

The Conversation

Will your phone one day let you smell as well as see and hear what’s on the other end of a call?

Published

on

theconversation.com – Jian Liu, Assistant Professor of Electrical Engineering and Computer Science, University of Tennessee – 2024-09-16 07:27:05

Phones that transmit odors seem like a great idea, but careful what you wish for!

Teo Mahatmana/iStock via Getty Images

Jian Liu, University of Tennessee

Advertisement

Curious Kids is a for of all ages. If you have a question you’d like an expert to answer, send it to curiouskidsus@theconversation.com.


Is it possible to make a phone through which we can smell, like we can hear and see? – Muneeba K., age 10, Pakistan


Imagine this: You pick up your phone for a call with a friend. Not only can you see their face and hear their voice, but you can also smell the cookies they just baked. It sounds like something out of a science fiction , but could it actually happen?

I’m a computer scientist who studies how machines sense the world.

What phones do now

When you listen to music or talk to someone on your phone, you can hear the sound through the built-in speakers. These speakers convert digital signals into physical vibrations using a tiny component called a diaphragm. Your ears sense those vibrations as sound waves.

Advertisement

Your phone also has a screen that displays images and . The screen uses tiny dots known as pixels that consist of three primary colors: red, green and blue. By mixing these colors in different ways, your phone can show you everything from beautiful beach scenes to cute puppies.

Smelling with phones

Now how about the sense of smell? Smells are created by tiny particles called molecules that float through the and reach your nose. Your nose then sends signals to your brain, which identifies the smell.

So, could your phone send these smell molecules to you? Scientists are working on it. Think about how your phone screen works. It doesn’t have every color in the world stored inside it. Instead, it uses just three colors to create millions of different hues and shades.

How your sense of smell works.

Now imagine something similar for smells. Scientists are developing digital scent technology that uses a small number of different cartridges, each containing a specific scent. Just like how pixels mix three colors to create images, these scent cartridges could mix to create different smells.

Advertisement

Just like images on your phone are made of digital codes that represent combinations of pixels, smells produced by a future phone could be created using digital codes. Each smell could have a specific recipe made up of different amounts of the ingredients in the cartridges.

When you a digital scent code, your phone could mix tiny amounts of the different scents from the cartridges to create the desired smell. This mix would then be released through a small vent on the phone, allowing you to smell it. With just a few cartridges, your phone could potentially create a huge variety of smells, much like how red, green and blue pixels can create countless colors.

Researchers and companies are already working on digital odor makers like this.

The challenges to making smell phones

Creating a phone that can produce smells involves several challenges. One is designing a system that can produce thousands of different smells using only a few cartridges. Another is how to control how strong a scent should be and how long a phone should emit it. And phones will also need to sense odors near them and convert those to digital codes so your friends’ phones can send smells to you.

Advertisement

The cartridges should also be easy to refill, and the chemicals in them be safe to breathe. These hurdles make it a tricky but exciting area of research.

An odiferous future

Even though we’re not there yet, scientists and engineers are working hard to make smell phones a reality. Maybe one day you’ll be able to not only see and hear your friend’s birthday party over the phone, but also smell the candles they blew out!


Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the where you .

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.The Conversation

Jian Liu, Assistant Professor of Electrical Engineering and Computer Science, University of Tennessee

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Will your phone one day let you smell as well as see and hear what’s on the other end of a call? appeared first on .com

Advertisement
Continue Reading

The Conversation

a double shot of US history

Published

on

theconversation.com – Kyle G. Volk, Professor of History, of Montana – 2024-09-16 07:28:46

Having a beer in Raceland, La.

Russell Lee for Farm Security Administration/WPA

Kyle G. Volk, University of Montana

Advertisement

Text saying: Uncommon Courses, from The Conversation

Uncommon Courses is an occasional from The Conversation U.S. highlighting unconventional approaches to teaching.

Title of course:

“Intoxication Nation: Alcohol in American History”

What prompted the idea for the course?

I wanted to get students about studying the past by learning about something that is very much a part of their own lives.

Alcohol – somewhat surprisingly to me at first – prominently in my own research on minority rights and U.S. democracy in the mid-19th century. As a result, I knew quite a bit about the temperance movement and conflicts over prohibition during that period. Designing this course allowed me to broaden my expertise.

Advertisement

What does the course explore?

Prohibition is a must-do subject. Students expect it. But I several hundred years of history: from the 17th-century invention of rum – as a byproduct of sugar produced by enslaved people – to the rise of craft beer and craft spirits in the 21st century.

A faded poster with an illustration of a person about to smash a huge bottle of alcohol, and the message 'Close the saloons' at the top.

A temperance poster from the World War I era.

Office of Naval Records and Library via National Archives Catalog

Along the way, I’m thrilled when students get excited about details that allow them to a more complicated historical cocktail. For example, they learn why white women’s production of hard cider was crucial to the survival of colonial Virginia. The short answer: Potable water was in short supply, alcoholic drinks were far healthier, and white men – and their indentured and enslaved workforce – were busy raising tobacco. It fell to women to turn fruit into salvation.

Why is this course relevant now?

Alcohol remains a big and almost inescapable part of American society. But of late, Americans have been drinking differently – and thinking about drinking differently.

Advertisement

Examples abound. Alcohol producers, we learn, now face competition from legalized weed. Drinking l evels rose during the COVID-19 pandemic, yet interest is declining among Gen Zers. The “wine mom” culture that brought some mothers together now faces mounting criticism.

And, of course, there’s the never-ending debate about the health benefits and risks of alcohol. Of late, the risks seem to be dominating headlines.

What’s a critical lesson from the course?

Alcohol has been a highly controversial, central aspect of the American experience, shaping virtually all sectors of our society – political and constitutional, business and economic, social and cultural.

What materials does the course feature?

What will the course prepare students to do?

Like any history course, this one aims to develop student’s analytical, written, research and verbal skills. In lots of ways, the topic is just a tool to get students to grow their brains. But I also seek to grow students’ critical awareness of the place of alcohol in their own lives. The course has also informed students’ paths after graduation – some who wound up working in the alcohol industry or recovery .The Conversation

Kyle G. Volk, Professor of History, University of Montana

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post a double shot of US history appeared first on theconversation.com

Advertisement
Continue Reading

The Conversation

Sunflowers make small moves to maximize their Sun exposure − physicists can model them to predict how they grow

Published

on

theconversation.com – Chantal Nguyen, Postdoctoral Associate at the BioFrontiers Institute, of Colorado Boulder – 2024-09-13 07:31:40

Sunflowers use tiny movements to follow the Sun’s path throughout the day.

AP Photo/Charlie Riedel

Chantal Nguyen, University of Colorado Boulder

Advertisement

Most of us aren’t spending our days watching our houseplants grow. We see their signs of only occasionally – a new leaf unfurled, a stem leaning toward the window.

But in the summer of 1863, Charles Darwin lay ill in bed, with nothing to do but watch his plants so closely that he could detect their small movements to and fro. The tendrils from his cucumber plants swept in circles until they encountered a stick, which they proceeded to twine around.

“I am getting very much amused by my tendrils,” he wrote.

This amusement blossomed into a decadeslong fascination with the little-noticed world of plant movements. He compiled his detailed observations and experiments in a 1880 book called “The Power of Movement in Plants.”

Advertisement

A zig-zagging line showing the movement of a leaf.

A diagram tracking the circumnutation of a leaf over three days.

Charles Darwin

In one study, he traced the motion of a carnation leaf every few hours over the course of three days, revealing an irregular looping, jagged path. The swoops of cucumber tendrils and the zags of carnation leaves are examples of inherent, ubiquitous plant movements called circumnutations – from the Latin circum, meaning circle, and nutare, meaning to nod.

Circumnutations vary in size, regularity and timescale across plant species. But their exact function remains unclear.

I’m a physicist interested in understanding collective behavior in living . Like Darwin, I’m captivated by circumnutations, since they may underlie more complex phenomena in groups of plants.

Advertisement

Sunflower patterns

A 2017 study revealed a fascinating observation that got my colleagues and me wondering about the role circumnutations could play in plant growth patterns. In this study, researchers found that sunflowers grown in a dense row naturally formed a near-perfect zigzag pattern, with each plant leaning away from the row in alternating directions.

This pattern the plants to avoid shade from their neighbors and maximize their exposure to sunlight. These sunflowers flourished.

Researchers then planted some plants at the same density but constrained them so that they could grow only upright without leaning. These constrained plants produced less oil than the plants that could lean and get the maximum amount of sun.

While farmers can’t grow their sunflowers quite this close together due to the potential for disease spread, in the future they may be able to use these patterns to up with new planting strategies.

Advertisement

Self-organization and randomness

This spontaneous pattern formation is a neat example of self-organization in nature. Self-organization refers to when initially disordered systems, such as a jungle of plants or a swarm of bees, achieve order without anything controlling them. Order emerges from the interactions between individual members of the system and their interactions with the .

Somewhat counterintuitively, noise – also called randomness – facilitates self-organization. Consider a colony of ants.

Ants secrete pheromones behind them as they crawl toward a food source. Other ants find this food source by the pheromone trails, and they further reinforce the trail they took by secreting their own pheromones in turn. Over time, the ants converge on the best path to the food, and a single trail prevails.

But if a shorter path were to become possible, the ants would not necessarily find this path just by following the existing trail.

Advertisement

If a few ants were to randomly deviate from the trail, though, they might stumble onto the shorter path and create a new trail. So this randomness injects a spontaneous change into the ants’ system that allows them to explore alternative scenarios.

Eventually, more ants would follow the new trail, and soon the shorter path would prevail. This randomness helps the ants adapt to changes in the environment, as a few ants spontaneously seek out more direct ways to their food source.

A group of honeybees spread out standing on honeycomb.

Beehives are an example of self-organization in nature.

Martin Ruegner/Stone via Getty Images

In biology, self-organized systems can be found at a range of scales, from the patterns of proteins inside cells to the socially complex colonies of honeybees that collectively build nests and forage for nectar.

Advertisement

Randomness in sunflower self-organization

So, could random, irregular circumnutations underpin the sunflowers’ self-organization?

My colleagues and I set out to explore this question by following the growth of young sunflowers we planted in the lab. Using cameras that imaged the plants every five minutes, we tracked the movement of the plants to see their circumnutatory paths.

We saw some loops and spirals, and lots of jagged movements. These ultimately appeared largely random, much like Darwin’s carnation. But when we placed the plants together in rows, they began to move away from one another, forming the same zigzag configurations that we’d seen in the previous study.

Five plants and a diagram showing loops and jagged lines that represent small movements made by the plants.

Tracking the circumnutations made by young sunflower plants.

Chantal Nguyen

Advertisement

We analyzed the plants’ circumnutations and found that at any given time, the direction of the plant’s motion appeared completely independent of how it was moving about half an hour earlier. If you measured a plant’s motion once every 30 minutes, it would appear to be moving in a completely random way.

We also measured how much the plant’s leaves grew over the course of two weeks. By putting all of these results together, we sketched a picture of how a plant moved and grew on its own. This information allowed us to computationally model a sunflower and simulate how it behaves over the course of its growth.

A sunflower model

We modeled each plant simply as a circular crown on a stem, with the crown expanding according to the growth rate we measured experimentally. The simulated plant moved in a completely random way, taking a “step” every half hour.

We created the model sunflowers with circumnutations of lower or higher intensity by tweaking the step sizes. At one end of the spectrum, sunflowers were much more likely to take tiny steps than big ones, leading to slow, minimal movement on average. At the other end were sunflowers that are equally as likely to take large steps as small steps, resulting in highly irregular movement. The real sunflowers we observed in our experiment were somewhere in the middle.

Advertisement

Plants require light to grow and have evolved the ability to detect shade and alter the direction of their growth in response.

We wanted our model sunflowers to do the same thing. So, we made it so that two plants that get too close to each other’s shade begin to lean away in opposite directions.

Finally, we wanted to see whether we could replicate the zigzag pattern we’d observed with the real sunflowers in our model.

First, we set the model sunflowers to make small circumnutations. Their shade avoidance responses pushed them away from each other, but that wasn’t enough to produce the zigzag – the model plants stayed stuck in a line. In physics, we would call this a “frustrated” system.

Advertisement

Then, we set the plants to make large circumnutations. The plants started moving in random patterns that often brought the plants closer together rather than farther apart. Again, no zigzag pattern like we’d seen in the field.

But when we set the model plants to make moderately large movements, similar to our experimental measurements, the plants could self-organize into a zigzag pattern that gave each sunflower optimal exposure to light.

So, we showed that these random, irregular movements helped the plants explore their surroundings to find desirable arrangements that benefited their growth.

Plants are much more dynamic than people give them credit for. By taking the time to follow them, scientists and farmers can unlock their secrets and use plants’ movement to their advantage.The Conversation

Chantal Nguyen, Postdoctoral Associate at the BioFrontiers Institute, University of Colorado Boulder

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Sunflowers make small moves to maximize their Sun exposure − physicists can model them to predict how they grow appeared first on .com

Advertisement
Continue Reading

Trending