fbpx
Connect with us

The Conversation

How do you build tunnels and bridges underwater? A geotechnical engineer explains the construction tricks

Published

on

theconversation.com – Ari Perez, Associate Professor of Civil Engineering, Quinnipiac University – 2024-06-10 07:38:17

Construction underway at China’s Lingdingyang Bridge.

Deng Hua/Xinhua News Agency via Getty Images

Ari Perez, Quinnipiac University

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to curiouskidsus@theconversation.com.

Advertisement

How do they build things like tunnels and bridges underwater? – Helen, age 10, Somerville, Massachusetts


When I was a kid, I discovered a Calvin and Hobbes comic strip that posed one of my own burning questions: How do they know the load limit on bridges? Calvin’s dad (incorrectly) tells him, “They bigger and bigger trucks over it until it breaks. Then they weigh the last truck and rebuild the bridge.”

Several decades later, I’m a geotechnical engineer. That means that I work on any construction projects that involve soil. Now I know the real answers to things people wonder about . Oftentimes, like Calvin’s dad, they’re thinking about things from the wrong direction. Engineers don’t typically determine the load limit on a bridge; instead, they build the bridge to carry the load they’re expecting.

It’s the same with another question I hear from time to time: How do engineers build things underwater? They actually don’t typically build things underwater – instead they build things that then end up underwater. Here’s what I mean.

Building underground, beneath the water

Sometimes when you’re building underwater, you’re really building underground. It’s not about the you see at the surface but rather what surrounds the actual structure you’re building.

Advertisement

If there’s rock or soil all around what you’re constructing, that’s typically thought of as underground construction – even if there’s a layer of water above it and that’s all you see from above.

Underground construction usually uses powerful tunnel-boring machines to excavate soil directly. This machine is often called a mole for a reason. Like the animal, it creates a tunnel similar to a burrow by excavating horizontally through the ground, removing the excavated material out behind it. Done with care, this method can successfully build a tunnel through the ground beneath a body of water that can then be lined and reinforced.

Engineers used this method to build the Chunnel, for instance, a railway tunnel beneath the English Channel that connects England and France.

black and white archival photo of men in an enclosed space with what looks like sturdy wooden scaffolding

Construction crew with a tunneling shield that allowed them to build the Sumner Tunnel in Boston, Mass., in the 1930s.

University Archives and Special Collections at UMass Boston

Advertisement

While modern machinery is quite advanced, this method of construction started about 200 years ago with the tunneling shield. Initially, these were temporary support structures that provided a safe from which workers could excavate. New temporary structures were built deeper and deeper as the tunnel grew. As the designs improved with experience, the shields were built to be mobile and eventually evolved into the modern tunnel-boring machine.

Building on dry land before moving into place

Some structures will ultimately be surrounded by water, resting on a riverbed or ocean floor. Luckily, engineers have some tricks up their sleeves to build bridges and tunnels that have components in direct contact with the water.

Underground construction is dangerous and hard to access. Dealing with water brings additional challenges. While soil and rock can be moved aside to create a stable opening, water will always move in to fill any gap and must continuously be pumped away.

Human beings, materials and machinery don’t really work well underwater, either. People need a constant supply. Placing concrete is difficult underwater, and some materials work only on dry . And since gas engines rely on air to operate, underwater equipment is very limited.

Advertisement

Some smaller tasks – aligning and joining pre-built sections of tunnel or inspecting to make sure submersion didn’t anything – are performed beneath the waves, but the bulk of construction is unlikely to be. Once the structure is in place, there’s constant monitoring and assessment happening underwater.

Because people generally can’t build underwater, there are two options: Do the building in the open and move it underwater, or temporarily transform the underwater site into a dry one.

Engineers have a few techniques for constructing underwater tunnels.

For the first option, crews typically build parts of the structure on dry land and then sink them into place. For instance, the Ted Williams Tunnel in Boston was constructed in sections in a shipyard. Workers dredged the tunnel’s future path in Boston Harbor, cleaning mud and other refuse out of the way. Then they placed the sealed segments along the prepared trench. Once the segments were connected, they opened the ends of the segments to create one long, continuous tube. Finally, the tunnel was covered with soil and rock. Very little of the construction process was actually done underwater.

In other cases, such as in shallow water, construction workers may be able to build directly from the surface. For instance, workers can drive waterfront retaining walls made out of sheet metal into the soil directly from a barge, without having to divert the water.

Advertisement

Temporarily clearing the water away

The second option is to get rid of the underwater problem entirely.

While creating a dry site at the bottom of a body of water is difficult, it does have a long history. After leading the sack of Rome in 410 C.E., Visigoth king Alaric died on his way home. In order to protect his magnificent burial from grave robbers, Alaric’s people temporarily diverted a local river to bury him and his loot in the riverbed before letting the river rush back over.

aerial view of a construction site bumping out into a river way

The U.S. Army Corps of Engineers used a cofferdam to hold back the water during construction of the Olmsted Locks and Dam on the Ohio River.

U.S. Army Corps of Engineers Digital Visual Library, CC BY

Nowadays, a project like this would use a cofferdam: a temporary, watertight enclosure that can be pumped dry to provide an open and safe site for construction. Once the area is enclosed and pumped of water, you’re in the realm of regular construction.

Advertisement

Using a caisson is another way to provide a dry area at a site that is typically underwater. A caisson is typically a prefabricated and water-tight structure, shaped like an upside-down cup, that a crew sinks into the water. They keep it pressurized to ensure that water will not rush in. Once the caisson is on the floor of the body of water, the air pressure and pumping keep the site dry and allow construction workers to build inside. The caisson becomes part of the finished structure.

engraving of a blueprint with five men working inside a caisson beneath the water level

Workers built parts of the Brooklyn Bridge using caissons that provided a bubble of dryness and breathable air on the riverbed.

Fotosearch/Getty Images

Builders constructed the piers of the Brooklyn Bridge using caissons. Although the caissons were structurally safe, the difference in pressure affected many workers, including the chief engineer, Washington Roebling. He developed caisson disease – more commonly known as decompression sickness – and had to resign.

Underwater construction is a complex and difficult task, but engineers have developed several ways to build underwater … often by not building underwater at all.

Advertisement

Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the where you .

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.The Conversation

Ari Perez, Associate Professor of Civil Engineering, Quinnipiac University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

The Conversation

The Boeing Starliner has returned to Earth without its crew – a former astronaut details what that means for NASA, Boeing and the astronauts still up in space

Published

on

theconversation.com – Michael E. Fossum, Vice President, A&M University – 2024-09-07 10:41:12

The Boeing Starliner, shown as it approached the International Station.
NASA via AP

Michael E. Fossum, Texas A&M University

Boeing’s crew transport space capsule, the Starliner, returned to Earth without its two-person crew right after midnight Eastern time on Sept. 7, 2024. Its remotely piloted return marked the end of a fraught test flight to the International Space Station which left two astronauts, Butch Wilmore and Sunita “Suni” Williams, on the station for months longer than intended after thruster failures led NASA to deem the capsule unsafe to pilot back.

Wilmore and Williams will stay on the International Space Station until February 2025, when they’ll return to Earth on a SpaceX Dragon capsule.

Advertisement

U.S. asked former commander of the International Space Station Michael Fossum about NASA’s decision to return the craft uncrewed, the future of the Starliner program and its crew’s extended stay at the space station.

What does this decision mean for NASA?

NASA awarded contracts to both Boeing and SpaceX in 2014 to crew transport vehicles to the International Space Station via the Commercial Crew Program. At the start of the program, most bets were on Boeing to take the lead, because of its extensive aerospace experience.

However, SpaceX moved very quickly with its new rocket, the Falcon 9, and its cargo ship, Dragon. While they suffered some early failures during testing, they aggressively built, tested and learned from each failure. In 2020, SpaceX successfully launched its first test crew to the International Space Station.

Meanwhile, Boeing struggled through some development setbacks. The outcome of this first test flight is a huge disappointment for Boeing and NASA. But NASA leadership has expressed its support for Boeing, and many experts, including me, believe it remains in the agency’s best interest to have more than one American crew launch system to support continued human space operations.

Advertisement

NASA is also continuing its exchange partnership with Russia. This partnership provides the agency with multiple ways to get crew members to and from the space station.

As space station operations continue, NASA and its partners have enough options to get people to and from the station that they’ll always have the essential crew on the station – even if there are launch disruptions for any one of the capable crewed vehicles. Starliner as an option will with that redundancy.

The ISS, a cylindrical craft with solar panels on each side.
NASA has a few options to get astronauts up to the International Space Station.
Roscosmos State Space Corporation via AP

What does this decision mean for Boeing?

I do think Boeing’s reputation is going to ultimately suffer. The company is going head-to-head with SpaceX. Now, the SpaceX Dragon crew spacecraft has several flights under its belt. It has proven a reliable way to get to and from the space station.

It’s important to remember that this was a test flight for Starliner. Of course, the program managers want each test flight to perfectly, but you can’t anticipate every potential problem through ground testing. Unsurprisingly, some problems cropped up – you expect them in a test flight.

The space is unforgiving. A small problem can become catastrophic in zero gravity. It’s hard to replicate these situations on the ground.

Advertisement

The technology SpaceX and Boeing use is also radically different from the kind of capsule technology used in the early days of the Mercury, Gemini and Apollo programs.

NASA has evolved and made strategic moves to advance its mission over the past two decades. The agency has leaned into its legacy of thinking outside the box. It was an innovative move to break from tradition and leverage commercial competitors to advance the program. NASA gave the companies a set of requirements and left it up to them to figure out how they would meet them.

What does this decision mean for Starliner’s crew?

I know Butch Wilmore and Suni Williams as rock-solid professionals, and I believe their first thoughts are about completing their mission safely. They are both highly experienced astronauts with previous long-duration space station experience. I’m sure they are taking this in stride.

Prior to joining NASA, Williams was a Naval aviator and Wilmore a combat veteran, so these two know how to face risk and accomplish their missions. This kind of unfavorable outcome is always a possibility in a test mission. I am sure they are leaning forward with a positive attitude and using their bonus time in space to advance science, technology and space exploration.

Advertisement

Their families shoulder the bigger impact. They were prepared to welcome the crew home in less than two weeks and now must adjust to unexpectedly being apart for eight months.

Right now, NASA is dealing with a ripple effect, with more astronauts than expected on the space station. More people means more consumables – like food and clothing – required. The space station has supported a large crew for short periods in the past, but with nine crew members on board , the systems have to work harder to purify recycled drinking water, generate oxygen and remove carbon dioxide from their atmosphere.

Wilmore and Williams are also consuming food, and they didn’t arrive with the clothes and other personal supplies they needed for an eight-month stay, so NASA has already started increasing those deliveries on cargo ships.

What does this decision mean for the future?

Human spaceflight is excruciatingly hard and relentlessly unforgiving. A million things must go right to have a successful mission. It’s impossible to fully understand the performance of systems in a microgravity environment until they’re tested in space.

Advertisement

NASA has had numerous failures and near-misses in the quest to put Americans on the Moon. They lost the Apollo 1 crew in a fire during a preflight test. They launched the first space shuttle in 1981, and dealt with problems throughout that program’s 30-year , including the terrible losses of Challenger and Columbia.

After having no other U.S. options for over 30 years, three different human spacecraft programs are now underway. In addition to the SpaceX Crew Dragon and the Boeing Starliner, NASA’s Orion spacecraft for the Artemis II mission, is planned to fly four astronauts around the Moon in the next couple of years.

These programs have had setbacks and bumps along the way – and there will be more – but I haven’t been this excited about human spaceflight since I was an 11-year-old cheering for Apollo and dreaming about putting the first human footprints on Mars.The Conversation

Michael E. Fossum, Vice President, Texas A&M University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Read More

The post The Boeing Starliner has returned to Earth without its crew – a former astronaut details what that means for NASA, Boeing and the astronauts still up in space appeared first on theconversation.com

Continue Reading

The Conversation

Space travel comes with risk − and SpaceX’s Polaris Dawn mission will push the envelope further than any private mission has before

Published

on

theconversation.com – Chris Impey, University Distinguished Professor of Astronomy, University of Arizona – 2024-09-06 07:30:06

Spacewalks are among the more dangerous activities associated with human spaceflight.

Ignatiev/E+ via Getty Images

Chris Impey, University of Arizona

Advertisement

is an unnatural for humans. We can’t survive unprotected in a pure vacuum for more than two minutes. Getting to space involves being strapped to a barely contained chemical explosion.

Since 1961, fewer than 700 people have been into space. Private space companies such as SpaceX and Blue Origin hope to boost that number to many thousands, and SpaceX is already taking bookings for flights to Earth orbit.

I’m an astronomer who has written extensively about space travel, including a book about our future off-Earth. I think a lot about the risks and rewards of exploring space.

As the commercial space industry takes off, there will be accidents and people will die. Polaris Dawn, planned to launch early in September 2024, will be a high-risk mission using only civilian astronauts. So, now is a good time to assess the risks and rewards of leaving the Earth.

Advertisement

Space travel is dangerous

Most Americans vividly recall the disasters that led to the loss of 14 astronauts’ lives. Two of the five space shuttles disintegrated, Challenger in 1986 soon after launch and Columbia in 2003 on reentry.

The Challenger and Columbia accidents are two of the most prominent examples of the risk that with human spaceflight.

In total, 30 astronauts and cosmonauts have died while for or during space missions.

There have also been dozens of close calls. Two astronauts are currently staying on the International Space Station for an extra six months because NASA declared their Boeing Starliner vehicle unsafe for the return journey. Starliner has had many problems during its development, flammable tape, stuck valves and inadequate parachute systems. But a critical thruster malfunction is what caused NASA to abandon it as a return vehicle.

It’s not always safe on the ground, either. In addition to the three Apollo 1 astronauts who died in a 1967 launch pad fire, about 120 people died in the launchpad explosion of an unmanned rocket in Russia in 1960, and hundreds died in 1996 when a Chinese rocket veered off course and crashed into a nearby village.

Advertisement

The fatality rate of people traveling in space is about 3%. That sounds low, but it’s higher than extreme sports such as BASE jumping or jumping off a cliff wearing a wingsuit. The only recreations that rival the risk of space travel are solo free-climbing and climbing above 19,685 feet (6,000 meters) in the Himalayas.

Civilians in space

The 2020s have kicked off the era of civilian astronauts. After the death of Christa McAuliffe in the Challenger disaster, NASA stopped sending civilians into space. But for commercial space companies, it’s part of the business model.

The first all-civilian crew to reach orbit rode a SpaceX Dragon spacecraft in 2021, the Inspiration 4 mission. Since 2020, 69 private astronauts have gone to space, although only 46 reached the Kármán line – the formal definition of the edge of space.

The commercial space industry’s safety record is not perfect. No civilian has died in space, but one pilot died and another was seriously in a test flight of Virgin Galactic’s SpaceShipTwo craft in 2014. This accident followed three deaths and three injuries in an explosion during a prelaunch test of the SpaceShipTwo rocket in 2007.

Advertisement

SpaceX, the largest commercial space company with 13,000 employees and a market value of US$180 billion, has seen no fatalities in flight, but it has recorded one death and hundreds of injuries in the workplace.

The Polaris Dawn mission was planned to launch Aug. 27, 2024, though a helium leak and bad weather has delayed it. It will push the envelope of risk for civilians in space. This SpaceX flight will reach an altitude of 435 miles (700 kilometers), higher than any astronauts since Apollo.

Four astronauts wearing white suits and helmets stand in front of a rocket on a launchpad.

The Polaris Dawn crew during their launch-day rehearsal.

Polaris Program/John Kraus, CC BY-NC-ND

The Polaris Dawn’s four-person civilian crew will receive a hefty dose of radiation, getting as much in a few hours as they would in 20 years on the Earth. NASA is doing research to understand the extent of the health risks from radiation.

Advertisement

The mission will also include a spacewalk – the first for nongovernment astronauts. It will use spacesuits never tested in space. Since the spacecraft they’re using – the SpaceX Dragon – has no airlock, the inside of the capsule will be exposed to the vacuum of space, with all the crew members wearing spacesuits.

Russian cosmonaut Alexei Leonov nearly died during the first spacewalk in 1965, and other spacewalks have led to temporary blindness, near drowning and nearly being lost in space forever. A spacesuit is like a miniature spacecraft, and it has to withstand rapid temperature changes of hundreds of degrees when moving in and out of direct sunlight. Even a small tear or puncture can be fatal.

But while space travel comes with dangers, it also has rewards. Since Polaris Dawn will travel higher than any previous mission that did not go to the Moon, the crew will be able to do research on high-radiation environments. They will investigate the effects of spaceflight on the human body and evaluate how future deep-space travelers might diagnose and treat themselves.

A less tangible but potentially profound benefit is the overview effect – many astronauts a feeling of awe from experiencing the Earth from space.

Advertisement

Space boom

Space is booming – hopefully just metaphorically and not literally. SpaceX makes money by launching Starlink satellites and ferrying supplies and people to the International Space Station, with estimated revenues of $15 billion this year. Blue Origin sells rocket engines and has contracts with NASA.

Both companies sell rides into space to high-net-worth individuals, but that’s a small fraction of their revenues. Space tourism is not available to the masses yet. Virgin Galactic offers a short, suborbital ride for $450,000, but getting to Earth orbit will cost you $55 million.

The space tourism market was $750 million in 2023, and that’s projected to grow to $5.2 billion over the next decade. Reusable rockets have made the cost of launching a spacecraft 10 times cheaper than it was a decade ago.

For space to take off with a demographic broader than multimillionaires and thrill-seekers, it needs to be safe – both in perception and in reality. Many space entrepreneurs expect space travel to follow aviation’s arc, which also started by attracting rich people and thrill-seekers.

Advertisement

Since 1930, improvements in technology and safety features have lowered the number of fatal accidents in the aviation industry per million miles flown by a factor of 3,000. A more realistic target may be to make space travel as safe as driving. That’s a more lenient target, since driving is more dangerous than flying. Your annual odds of dying in a car crash are 1 in 5,000, with annual odds of 1 in 11 million of dying in a plane crash.

In the United States, the government has kept regulations light on the commercial space industry to encourage entrepreneurs.

Elon Musk’s dreams of millions of passengers and a city on Mars may not become reality. But if the cost of a jaunt to Earth’s orbit comes down to the cost of a high-end cruise, many people could experience the thrill of weightlessness and of seeing the Earth as a beautiful planet from above.The Conversation

Chris Impey, University Distinguished Professor of Astronomy, University of Arizona

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Read More

The post Space travel comes with risk − and SpaceX’s Polaris Dawn mission will push the envelope further than any private mission has before appeared first on theconversation.com

Continue Reading

The Conversation

Tiny, compact galaxies are masters of disguise in the distant universe − searching for the secrets behind the Little Red Dots

Published

on

theconversation.com – Fabio Pacucci, Astrophysicist, Smithsonian Institution – 2024-09-06 07:36:33

Supermassive black holes grow by pulling in matter around them.

M. Kornmesser/ESO via AP

Fabio Pacucci, Smithsonian Institution

Advertisement

Astronomers exploring the faraway universe with the James Webb Space Telescope, NASA’s most powerful telescope, have found a class of galaxies that challenges even the most skillful creatures in mimicry – like the mimic octopus. This creature can impersonate other marine animals to avoid predators. Need to be a flatfish? No problem. A sea snake? Easy.

When astronomers analyzed the first Webb images of the remote parts of the universe, they spotted a never-before-seen group of galaxies. These galaxies – some hundreds of them and called the Little Red Dots – are very red and compact, and visible only during about 1 billion years of cosmic history. Like the mimic octopus, the Little Red Dots puzzle astronomers, because they look like different astrophysical objects. They’re either massively heavy galaxies or modestly sized ones, each containing a supermassive black hole at its core.

However, one thing is certain. The typical Little Red Dot is small, with a radius of only 2% of that of the Milky Way galaxy. Some are even smaller.

As an astrophysicist who studies faraway galaxies and black holes, I am interested in understanding the nature of these little galaxies. What powers their light and what are they, really?

Advertisement

Many galaxies, indicated as small, bright dots, shown against a dark backdrop.

The universe is full of countless galaxies, and the Webb telescope has helped astronomers study some of them.

NASA, ESA, CSA, STScI

The mimicking contest

Astronomers analyze the light our telescopes from faraway galaxies to assess their physical properties, such as the number of they contain. We can use the properties of their light to study the Little Red Dots and figure out whether they’re made up of lots of stars or whether they have a black hole inside them.

Light that reaches our telescopes ranges in wavelength from long radio waves to energetic gamma rays. Astronomers break the light down into the different frequencies and visualize them with a chart, called a spectrum.

Sometimes, the spectrum contains emission lines, which are ranges of frequencies where more intense light emission occurs. In this case, we can use the spectrum’s shape to predict whether the galaxy is harboring a supermassive black hole and estimate its mass.

Advertisement

Similarly, studying X-ray emisson from the galaxy can reveal a supermassive black hole’s presence.

As the ultimate masters of disguise, the Little Red Dots appear as different astrophysical objects, depending on whether astronomers choose to study them using X-rays, emission lines or something else.

The information astronomers have collected so far from the Little Red Dots’ spectra and emission lines has led to two diverging models explaining their nature. These objects are either extremely dense galaxies containing billions of stars or they host a supermassive black hole.

The two hypotheses

In the stars-only hypothesis, the Little Red Dots contain massive amounts of stars – up to 100 billion stars. That’s approximately the same number of stars as in the Milky Way – a much larger galaxy.

Advertisement

Imagine standing alone in a huge, empty room. This vast, quiet represents the region of the universe in the vicinity of our solar system where stars are sparsely scattered. Now, picture that same room, but packed with the entire population of China.

This packed room is what the core of the densest Little Red Dots would feel like. These astrophysical objects may be the densest stellar environments in the entire universe. Astronomers aren’t even sure whether such stellar can physically exist.

Then, there is the black hole hypothesis. The majority of Little Red Dots display clear signs of the presence of a supermassive black hole in their center. Astronomers can tell whether there’s a black hole in the galaxy by looking at large emission lines in their spectra, created by gas around the black hole swirling at high speed.

Astronomers actually estimate these black holes are too massive, with the size of their compact host galaxies.

Advertisement

Black holes typically have a mass of about 0.1% of the stellar mass of their host galaxies. But some of these Little Red Dots harbor a black hole almost as massive as their entire galaxy. Astronomers call these overmassive black holes, because their existence defies the conventional ratio typically observed in galaxies.

Animation illustrating the James Webb Space Telescope’s discovery of overmassive black holes in the distant Universe. Credit: Timothy Rauch.

There’s another catch, though. Unlike ordinary black holes, those presumably present in the Little Red Dots don’t show any sign of X-ray emission. Even in the deepest, high-energy images available, where astronomers should be able to easily observe these black holes, there’s no trace of them.

Few solutions and plenty of hopes

So are these astrophysical curiosities massive galaxies with far too many stars? Or do they host supermassive black holes at their center that are too massive and don’t emit enough X-rays? What a puzzle.

With more observations and theoretical modeling, astronomers are starting to up with some possible . Maybe the Little Red Dots are composed only of stars, but these stars are so dense and compact that they mimic the emission lines typically seen from a black hole.

Advertisement

Or maybe supermassive – even overmassive – black holes lurk at the cores of these Little Red Dots. If that’s the case, two models can explain the lack of X-ray emissions.

First, vast amounts of gas could float around the black hole, which would block part of the high-energy radiation emitted from the black hole’s center. Second, the black hole could be pulling in gas much faster than usual. This would produce a different spectrum with fewer X-rays than astronomers usually see.

The fact that the black holes are too big, or overmassive, might not be a problem for our understanding of the universe, but rather the best indication of how the first black holes in the universe were born. In fact, if the first black holes that ever formed were very massive – about 100,000 times the mass of the Sun – theoretical models suggest that their ratio of black hole mass to the mass of the host galaxy could stay high for a long time after formation.

So how can astronomers discover the true nature of these little specks of light that are shining at the beginning of time? As in the case of our master of disguise – the octopus – the secret resides in observing their behavior.

Advertisement

Using the Webb telescope and more powerful X-ray telescopes to take additional observations will eventually uncover a feature that astronomers can attribute to only one of the two scenarios.

For example, if astronomers clearly detected X-ray or radio emission, or infrared light emitted from around where the black hole might be, they’d know the black hole hypothesis is the right one.

Just like how our marine friend can pretend to be a starfish, eventually it will move its tentacles and reveal its true nature.The Conversation

Fabio Pacucci, Astrophysicist, Smithsonian Institution

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Read More

The post Tiny, compact galaxies are masters of disguise in the distant universe − searching for the secrets behind the Little Red Dots appeared first on .com

Continue Reading

Trending