fbpx
Connect with us

The Conversation

Why do people hate people?

Published

on

theconversation.com – Kristine Hoover, Professor of Organizational Leadership, Gonzaga University – 2024-05-13 07:16:27

Biases against certain groups of people can escalate into acts of violence if left unchecked.

Paul Taylor/Stone via Getty Images

Kristine Hoover, Gonzaga University and Yolanda Gallardo, Gonzaga University

Curious Kids is a for of all ages. If you have a question you'd like an expert to answer, send it to curiouskidsus@theconversation.com.

Advertisement

Why do people hate people? – Daisy, age 9, Lake Oswego, Oregon


Have you ever said “I hate you” to someone? What about using the “h-word” in casual conversation, like “I hate broccoli”? What are you really feeling when you say that you hate something or someone?

The Merriam-Webster dictionary the word “hate” as an “intense hostility and aversion usually deriving from fear, anger, or sense of injury.” All over the world, researchers like us are studying hate from disciplines like education, history, , leadership, psychology, sociology and many others.

If you had a scary experience with thunderstorms, you might say that you hate thunderstorms. Maybe you have gotten very angry at something that happened at a particular place, so now you say you hate going there. Maybe someone said something hurtful to you, so you say you hate that person.

Understanding hate as an emotional response can help you recognize your feelings about something or someone and be curious about where those feelings are coming from. This awareness will give you time to gather more information and imagine the other person's perspective.

Advertisement

So what is hate and why do people hate? There are many answers to these questions.

What hate isn't

Hate, according to the U.S. Department of Justice, “does not mean rage, anger or general dislike.”

Sometimes people think they have to feel or believe a certain way about another person or group of people because of what they hear or see around them. For example, people might say they hate another person or group of people when what they really mean is that they don't agree with them, don't understand them or don't like how they behave or the things they believe in.

View between the arm of a person with their hands on their hips, focusing on a child sitting at table with a glare

Do you hate this person, or are you angry, hurt or afraid?

Lourdes Balduque/Moment via Getty Images

Advertisement

It is easy to blame others for things you don't believe or experiences you don't like. Think about times you might have heard someone at school say they hate a classmate or a teacher. Could they have been angry, hurt or confused about something but used the word hate to explain or name how they were feeling?

When you don't understand someone else, it can make you nervous and even afraid. Instead of being curious about each other's unique experiences, people may judge others for being different – they may have a different skin color, practice a different religion, come from a different country, be older or younger, or use a wheelchair.

When people judge people as being less important or less human than themselves, that is a form of hatred.

What hate is

The U.S. Department of Justice defines hate as “bias against people or groups with specific characteristics that are defined by the law.” These characteristics can include a person's race, religion, gender, sexual orientation, disability and national origin.

Advertisement

One way to think about hate is as a pyramid. At the bottom of the pyramid, hate is a feeling that grows from biased attitudes about others, like stereotypes that certain groups of people are animals, lazy or stupid.

Sometimes these biased attitudes and feelings provide a foundation for people to act out their biases, such as through bullying, exclusion or insults. For example, many Asian people in the U.S. experienced an increase in hate incidents during the COVID-19 pandemic. If communities accept biases as OK, some people may move up the pyramid and think it is also OK to discriminate, or believe that specific groups of people are not welcome in certain neighborhoods or jobs because of who they are.

Near the top of the pyramid, some people commit violence or hate crimes because they believe their own way of being is better than others'. They may threaten or physically harm others, or destroy property. At the very top of the pyramid is genocide, the intent to destroy a particular group – like what Jewish people experienced during World War II or what Rohingya people are experiencing in Myanmar, near China.

Hate at the middle and higher levels of the pyramid happens because no one took action to discourage the biased feelings, attitudes and actions at the lower levels of the pyramid.

Advertisement

Taking action against hate

Not only can individual people hate, there are also hate groups like the Ku Klux Klan that attack people who are not white, straight or Christian. Sometimes hate has been written into law like the Indian Removal Act or Jim Crow laws that persecuted Native and Black Americans. If we stay silent when we encounter hate, that hatred can grow and do greater levels of harm.

There are many ways you can help stop hate in your everyday life.

Pay attention to what is being said around you. If the people you spend a lot of time with are saying hateful things about other groups, consider speaking up or changing who you hang out with and where. Be an upstander – sit with someone who is being targeted and when you see or hear hate incidents.

Close-up of group of protestors yelling with their fists in the air

Protests are one way people speak up on behalf of a specific group.

FG Trade/E+ via Getty Images

Advertisement

Start noticing when you are letting hateful words or behaviors into your thoughts and actions. Get to know what hate looks and sounds like in yourself and in others, what you see online.

Be open to meeting others who have different experiences than you and give them a chance to let you know who they are. Be brave and face your fears. Be curious and kind.

You are not alone in standing up to hate. Many human rights groups and government initiatives are doing the work of eradicating hate, too. We all have a “response-ability,” or the ability to respond. As leader the Rev. Martin Luther King Jr. said, “Darkness cannot drive out darkness, only light can do that. Hate cannot drive out hate, only love can do that.”

You just might find that it is easier to love other people than to hate them. Others will see how you behave and will follow your .

Advertisement

Hello, curious kids! Do you have a question you'd like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the where you live.

And since curiosity has no age limit – adults, let us know what you're wondering, too. We won't be able to answer every question, but we will do our best.The Conversation

Kristine Hoover, Professor of Organizational Leadership, Gonzaga University and Yolanda Gallardo, Dean of Education, Gonzaga University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

The Conversation

Even short trips to space can change an astronaut’s biology − a new set of studies offers the most comprehensive look at spaceflight health since NASA’s Twins Study

Published

on

theconversation.com – Susan Bailey, Professor of Radiation Cancer Biology and Oncology, Colorado – 2024-07-03 07:22:56
Crew members from the Inspiration4 mission. New research looks at the biological effects of their short to .
SpaceX, CC BY-NC

Susan Bailey, Colorado State University

Only about 600 people have ever traveled to space. The vast majority of astronauts over the past six decades have been middle-aged men on short-duration missions of fewer than 20 days.

, with private, commercial and multinational spaceflight providers and flyers entering the market, we are witnessing a new era of human spaceflight. Missions have ranged from minutes, hours and days to months.

As humanity looks ahead to returning to the Moon over the coming decade, space exploration missions will be much longer, with many more space travelers and even space tourists. This also means that a wider diversity of people will experience the extreme of space – more women and people of different ethnicities, ages and status.

Advertisement

Since people respond differently to the unique stressors and exposures of space, researchers in space health, like me, seek to better understand the human health effects of spaceflight. With such information, we can figure out how to help astronauts stay healthy both while they're in space and once they return to Earth.

As part of the historic NASA Twins Study, in 2019, my colleagues and I published groundbreaking research on how one year on board the International Space Station affects the human body.

I am a radiation cancer biologist in Colorado State University's Department of Environmental and Radiological Health Sciences. I've spent the past few years continuing to build on that earlier research in a series of papers recently published across the portfolio of Nature journals.

These papers are part of the Space Omics and Medical Atlas package of manuscripts, data, protocols and repositories that represent the largest collection ever assembled for aerospace medicine and space biology. Over 100 institutions from 25 countries contributed to the coordinated release of a wide range of spaceflight data.

Advertisement

The NASA Twins Study

NASA's Twins Study seized on a unique research opportunity.

NASA selected astronaut Scott for the agency's first one-year mission, during which he spent a year on board the International Space Station from 2015 into 2016. Over the same time period, his identical twin brother, Mark Kelly, a former astronaut and current U.S. senator representing Arizona, remained on Earth.

Two identical men wearing blue jumpsuits stand next to each other.
NASA astronaut Scott Kelly, left, who went into space during the NASA Twins Study, stands next to his twin brother, Mark Kelly, who stayed on Earth.
AP Photo/Pat Sullivan

My team and I examined blood samples collected from the twin in space and his genetically twin back on Earth before, during and after spaceflight. We found that Scott's telomeres – the protective caps at the ends of chromosomes, much like the plastic tip that keeps a shoelace from fraying – lengthened, quite unexpectedly, during his year in space.

When Scott returned to Earth, however, his telomeres quickly shortened. Over the following months, his telomeres recovered but were still shorter after his journey than they had been before he went to space.

As you get older, your telomeres shorten because of a variety of factors, including stress. The length of your telomeres can serve as a biological indicator of your risk for developing age-related conditions such as dementia, cardiovascular disease and cancer.

Advertisement

In a separate study, my team studied a cohort of 10 astronauts on six-month missions on board the International Space Station. We also had a control group of age- and sex-matched participants who stayed on the ground.

We measured telomere length before, during and after spaceflight and again found that telomeres were longer during spaceflight and then shortened upon return to Earth. Overall, the astronauts had many more short telomeres after spaceflight than they had before.

One of the other Twins Study investigators, Christopher Mason, and I conducted another telomere study – this time with twin high-altitude mountain climbers – a somewhat similar extreme environment on Earth.

We found that while climbing Mount Everest, the climbers' telomeres were longer, and after they descended, their telomeres shortened. Their twins who remained at low altitude didn't experience the same changes in telomere length. These results indicate that it's not the space station's microgravity that led to the telomere length changes we observed in the astronauts – other culprits, such as increased radiation exposure, are more likely.

Advertisement

Civilians in space

In our latest study, we studied telomeres from the crew on board SpaceX's 2021 Inspiration4 mission. This mission had the first all-civilian crew, whose ages spanned four decades. All of the crew members' telomeres lengthened during the mission, and three of the four astronauts also exhibited telomere shortening once they were back on Earth.

Four people wearing black jumpsuits wave their hands in the air.
The crew members from SpaceX's 2021 Inspiration4 mission.
SpaceX, CC BY-NC

What's particularly interesting about these findings is that the Inspiration4 mission lasted only three days. So, not only do scientists now have consistent and reproducible data on telomeres' response to spaceflight, but we also know it happens quickly. These results suggest that even short trips, like a weekend getaway to space, will be associated with changes in telomere length.

Scientists still don't totally understand the health impacts of such changes in telomere length. We'll need more research to figure out how both long and short telomeres might affect an astronaut's long-term health.

Telomeric RNA

In another paper, we showed that the Inspiration4 crew – as well as Scott Kelly and the high-altitude mountain climbers – exhibited increased levels of telomeric RNA, termed TERRA.

Telomeres consist of lots of repetitive DNA sequences. These are transcribed into TERRA, which contributes to telomere structure and helps them do their job.

Advertisement

Together with laboratory studies, these findings tell us that telomeres are being damaged during spaceflight. While there is still a lot we don't know, we do know that telomeres are especially sensitive to oxidative stress. So, the chronic oxidative damage that astronauts experience when exposed to space radiation around the clock likely contributes to the telomeric responses we observe.

We also wrote a review article with a more futuristic perspective of how better understanding telomeres and aging might begin to inform the ability of humans to not only survive long-duration space travel but also to thrive and even colonize other planets. Doing so would require humans to reproduce in space and future generations to grow up in space. We don't know if that's even possible – yet.

Plant telomeres in space

My colleagues and I contributed other work to the Space Omics and Medical Atlas package, as well, including a paper published in Nature Communications. The study team, led by A&M biologist Dorothy Shippen and Ohio University biologist Sarah Wyatt, found that, unlike people, plants flown in space did not have longer telomeres during their time on board the International Space Station.

The plants did, however, ramp up their production of telomerase, the enzyme that helps maintain telomere length.

Advertisement

As anyone who's seen “The Martian” knows, plants will play an essential role in long-term human survival in space. This finding suggests that plants are perhaps more naturally suited to withstand the stressors of space than humans.The Conversation

Susan Bailey, Professor of Radiation Cancer Biology and Oncology, Colorado State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Even short trips to space can change an astronaut's biology − a new set of studies offers the most comprehensive look at spaceflight health since NASA's Twins Study appeared first on theconversation.com

Advertisement
Continue Reading

The Conversation

From diagnosing brain disorders to cognitive enhancement, 100 years of EEG have transformed neuroscience

Published

on

theconversation.com – Erika Nyhus, Associate Professor of Psychology and Neuroscience, Bowdoin College – 2024-07-02 07:28:40
The electroencephalogram allowed scientists to record and read brain activity.
Kateryna Kon/Science Photo Library via Getty Images

Erika Nyhus, Bowdoin College

Electroencephalography, or EEG, was invented 100 years ago. In the years since the invention of this device to monitor brain electricity, it has had an incredible impact on how scientists study the human brain.

Since its first use, the EEG has shaped researchers' understanding of cognition, from perception to memory. It has also been important for diagnosing and guiding treatment of multiple brain disorders, epilepsy.

I am a cognitive neuroscientist who uses EEG to study how people remember from their past. The EEG's 100-year anniversary is an to reflect on this discovery's significance in neuroscience and medicine.

Advertisement

Discovery of EEG

On July 6, 1924, psychiatrist Hans Berger performed the first EEG recording on a human, a 17-year-old boy undergoing neurosurgery. At the time, Berger and other researchers were performing electrical recordings on the brains of animals.

What set Berger apart was his obsession with finding the physical basis of what he called psychic energy, or mental effort, in people. Through a of experiments spanning his early career, Berger measured brain volume and temperature to study changes in mental processes such as intellectual work, attention and desire.

He then turned to recording electrical activity. Though he recorded the first traces of EEG in the human brain in 1924, he did not publish the results until 1929. Those five intervening years were a tortuous phase of self-doubt about the source of the EEG signal in the brain and refining the experimental setup. Berger recorded hundreds of EEGs on multiple subjects, including his own , with both experimental successes and setbacks.

This is among the first EEG readings published in Hans Berger's study. The top trace is the EGG while the bottom is a reference trace of 10 Hz.
Two EEG traces, the top more irregular in rhythm than the bottom.
Hans Berger/Über das Elektrenkephalogramm des Menchen. Archives für Psychiatrie. 1929; 87:527-70 via Wikimedia Commons

Finally convinced of his results, he published a series of papers in the journal Archiv für Psychiatrie and had hopes of winning a Nobel Prize. Unfortunately, the research community doubted his results, and years passed before anyone else started using EEG in their own research.

Berger was eventually nominated for a Nobel Prize in 1940. But Nobels were not awarded that year in any category due to World War II and Germany's occupation of Norway.

Advertisement

Neural oscillations

When many neurons are active at the same time, they produce an electrical signal strong enough to spread instantaneously through the conductive tissue of the brain, skull and scalp. EEG electrodes placed on the head can record these electrical signals.

Since the discovery of EEG, researchers have shown that neural activity oscillates at specific frequencies. In his initial EEG recordings in 1924, Berger noted the predominance of oscillatory activity that cycled eight to 12 times per second, or 8 to 12 hertz, named alpha oscillations. Since the discovery of alpha rhythms, there have been many attempts to understand how and why neurons oscillate.

Neural oscillations are thought to be important for effective communication between specialized brain regions. For example, theta oscillations that cycle at 4 to 8 hertz are important for communication between brain regions involved in memory encoding and retrieval in animals and humans.

Finger pointing at EEG reading
Different frequencies of neural oscillations indicate different types of brain activity.
undefined undefined/iStock via Getty Images Plus

Researchers then examined whether they could alter neural oscillations and therefore affect how neurons to each other. Studies have shown that many behavioral and noninvasive methods can alter neural oscillations and to changes in cognitive performance. Engaging in specific mental activities can induce neural oscillations in the frequencies those mental activities use. For example, my team's research found that mindfulness meditation can increase theta frequency oscillations and improve memory retrieval.

Noninvasive brain stimulation methods can target frequencies of interest. For example, my team's ongoing research found that brain stimulation at theta frequency can lead to improved memory retrieval.

Advertisement

EEG has also led to major discoveries about how the brain processes information in many other cognitive domains, including how people perceive the world around them, how they focus their attention, how they communicate through language and how they emotions.

Diagnosing and treating brain disorders

EEG is commonly used to diagnose sleep disorders and epilepsy and to guide brain disorder treatments.

Scientists are using EEG to see whether memory can be improved with noninvasive brain stimulation. Although the research is still in its infancy, there have been some promising results. For example, one study found that noninvasive brain stimulation at gamma frequency – 25 hertz – improved memory and neurotransmitter transmission in Alzheimer's disease.

Back of person's head enveloped by the many, small round electrodes of an EEG cap
Researchers and clinicians use EEG to diagnose conditions like epilepsy.
BSIP/Collection Mix: Subjects via Getty Images

A new type of noninvasive brain stimulation called temporal interference uses two high frequencies to cause neural activity equal to the difference between the stimulation frequencies. The high frequencies can better penetrate the brain and reach the targeted area. Researchers recently tested this method in people using 2,000 hertz and 2,005 hertz to send 5 hertz theta frequency at a key brain region for memory, the hippocampus. This led to improvements in remembering the name associated with a face.

Although these results are promising, more research is needed to understand the exact role neural oscillations play in cognition and whether altering them can lead to long-lasting cognitive enhancement.

Advertisement

The future of EEG

The 100-year anniversary of the EEG provides an opportunity to consider what it has taught us about brain function and what this technique can do in the future.

In a survey commissioned by the journal Nature Human Behaviour, over 500 researchers who use EEG in their work were asked to make predictions on the future of the technique. What will be possible in the next 100 years of EEG?

Some researchers, including myself, predict that we'll use EEG to diagnose and create targeted treatments for brain disorders. Others anticipate that an affordable, wearable EEG will be widely used to enhance cognitive function at home or will be seamlessly integrated into virtual reality applications. The possibilities are vast.The Conversation

Erika Nyhus, Associate Professor of Psychology and Neuroscience, Bowdoin College

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Read More

The post From diagnosing brain disorders to cognitive enhancement, 100 years of EEG have transformed neuroscience appeared first on .com

Continue Reading

The Conversation

Supreme Court kicks cases about tech companies’ First Amendment rights back to lower courts − but appears poised to block states from hampering online content moderation

Published

on

theconversation.com – Lynn Greenky, Professor Emeritus of Communication and Rhetorical Studies, Syracuse – 2024-07-01 15:26:42
How much power do social media companies have over what users post?
Midnight Studio/iStock/Getty Images Plus

Lynn Greenky, Syracuse University

The has sent back to lower courts the about whether states can block social media companies such as Facebook and X, formerly Twitter, from regulating and controlling what users can post on their platforms.

Laws in Florida and Texas sought to impose restrictions on the internal policies and algorithms of social media platforms in ways that influence which posts will be promoted and spread widely and which will be made less visible or even .

In the unanimous decision, issued on July 1, 2024, the high court remanded the two cases, Moody v. NetChoice and NetChoice v. Paxton, to the 11th and 5th U.S. Circuit Courts of Appeals, respectively. The court admonished the lower courts for their failure to consider the full force of the laws' applications. It also warned the lower courts to consider the boundaries imposed by the Constitution against interference with private speech.

Advertisement

Contrasting views of social media sites

In their arguments before the court in February 2024, the two sides described competing visions of how social media fits into the often overwhelming flood of information that defines modern digital society.

The states said the platforms were mere conduits of communication, or “speech hosts,” similar to legacy telephone companies that were required to carry all calls and prohibited from discriminating against users. The states said that the platforms should have to carry all posts from users without discrimination among them based on what they were saying.

The states argued that the content moderation rules the social media companies imposed were not examples of the platforms themselves speaking – or choosing not to speak. Rather, the states said, the rules affected the platforms' behavior and caused them to censor certain views by allowing them to determine whom to allow to speak on which topics, which is outside First Amendment protections.

By contrast, the social media platforms, represented by NetChoice, a tech industry trade group, argued that the platforms' guidelines about what is acceptable on their sites are protected by the First Amendment's guarantee of speech free from government interference. The companies say their platforms are not public forums that may be subject to government regulation but rather private services that can exercise their own editorial judgment about what does or does not appear on their sites.

Advertisement

They argued that their policies were aspects of their own speech and that they should be allowed to develop and implement guidelines about what is acceptable speech on their platforms based on their own First Amendment rights.

Here's what the First Amendment says and what it means.

A reframe by the Supreme Court

All the litigants – NetChoice, Texas and Florida – framed the issue around the effect of the laws on the content moderation policies of the platforms, specifically whether the platforms were engaged in protected speech. The 11th U.S. Circuit Court of Appeals upheld a lower court preliminary injunction against the Florida , holding the content moderation policies of the platforms were speech and the law was unconstitutional.

The 5th U.S. Circuit Court of Appeals came to the opposite conclusion and held that the platforms were not engaged in speech, but rather the platform's algorithms controlled platform behavior unprotected by the First Amendment. The 5th Circuit determined the behavior was censorship and reversed a lower court injunction against the Texas law.

The Supreme Court, however, reframed the inquiry. The court noted that the lower courts failed to consider the full range of activities the laws covered. Thus, while a First Amendment inquiry was in order, the decisions of the lower courts and the arguments by the parties were incomplete. The court added that neither the parties nor the lower courts engaged in a thorough analysis of whether and how the states' laws affected other elements of the platforms' products, such as Facebook's direct messaging applications, or even whether the laws have any impact on email providers or online marketplaces.

Advertisement

The Supreme Court directed the lower courts to engage in a much more exacting analysis of the laws and their implications and provided some guidelines.

First Amendment principles

The court held that content moderation policies reflect the constitutionally protected editorial choices of the platforms, at least regarding what the court as “heartland applications” of the laws – such as Facebook's News Feed and YouTube's homepage.

The Supreme Court required the lower courts to consider two core constitutional principles of the First Amendment. One is that the amendment protects speakers from being compelled to communicate messages they would prefer to exclude. Editorial discretion by entities, social media companies, that compile and curate the speech of others is a protected First Amendment activity.

The other principle holds that the amendment precludes the government from controlling private speech, even for the purpose of balancing the marketplace of ideas. Neither nor federal government may manipulate that marketplace for the purposes of presenting a more balanced array of viewpoints.

Advertisement

The court also affirmed that these principles apply to digital media in the same way they apply to traditional or legacy media.

In the 96-page opinion, Justice Elena Kagan wrote: “The First Amendment … does not go on leave when social media are involved.” For now, it appears the social media platforms will continue to control their content.The Conversation

Lynn Greenky, Professor Emeritus of Communication and Rhetorical Studies, Syracuse University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

Advertisement

The post Supreme Court kicks cases about tech companies' First Amendment rights back to lower courts − but appears poised to block states from hampering online content moderation appeared first on .com

Continue Reading

News from the South

Trending