fbpx
Connect with us

The Conversation

‘Dancing’ raisins − a simple kitchen experiment reveals how objects can extract energy from their environment and come to life

Published

on

theconversation.com – Saverio Eric Spagnolie, Professor of Mathematics, of Wisconsin-Madison – 2024-05-13 07:29:32

Surface bubble growth can lift objects upward against gravity.

Saverio Spagnolie

Saverio Eric Spagnolie, University of Wisconsin-Madison

Scientific discovery doesn't always require a high-tech laboratory or a hefty budget. Many people have a first-rate lab right in their own homes – their kitchen.

Advertisement

The kitchen offers plenty of opportunities to view and explore what physicists call soft matter and complex fluids. Everyday phenomena, such as Cheerios clustering in milk or rings left when drops of coffee evaporate, have led to discoveries at the intersection of physics and chemistry and other tasteful collaborations between food scientists and physicists.

Two , Sam Christianson and Carsen Grote, and I published a new study in Nature Communications in May 2024 that dives into another kitchen observation. We studied how objects can levitate in carbonated fluids, a phenomenon that's whimsically referred to as dancing raisins.

The study explored how objects like raisins can rhythmically move up and down in carbonated fluids for several minutes, even up to an hour.

An accompanying Twitter thread about our research went viral, amassing over half a million views in just two days. Why did this particular experiment catch the imaginations of so many?

Advertisement

Bubbling physics

Sparkling water and other carbonated beverages fizz with bubbles because they contain more gas than the fluid can – they're “supersaturated” with gas. When you open a bottle of champagne or a soft drink, the fluid pressure drops and CO₂ molecules begin to make their escape to the surrounding .

Bubbles do not usually form spontaneously in a fluid. A fluid is composed of molecules that like to stick together, so molecules at the fluid boundary are a bit unhappy. This results in surface tension, a force which seeks to reduce the surface area. Since bubbles add surface area, surface tension and fluid pressure normally squeeze any forming bubbles right back out of existence.

But rough patches on a container's surface, like the etchings in some champagne glasses, can protect new bubbles from the crushing effects of surface tension, offering them a chance to form and grow.

Advertisement

Bubbles also form inside the microscopic, tubelike cloth fibers left behind after wiping a glass with a towel. The bubbles grow steadily on these tubes and, once they're big enough, detach and float upward, carrying gas out of the container.

But as many champagne enthusiasts who put fruits in their glasses know, surface etchings and little cloth fibers aren't the only places where bubbles can form. Adding a small object like a raisin or a peanut to a sparkling drink also enables bubble growth. These immersed objects act as alluring new surfaces for opportunistic molecules like CO₂ to accumulate and form bubbles.

And once enough bubbles have grown on the object, a levitation act may be performed. Together, the bubbles can lift the object up to the surface of the liquid. Once at the surface, the bubbles pop, dropping the object back down. The process then begins again, in a periodic vertical dancing motion.

Dancing raisins

Raisins are particularly good dancers. It takes only a few seconds for enough bubbles to form on a raisin's wrinkly surface before it starts to rise upward – bubbles have a harder time forming on smoother surfaces. When dropped into just-opened sparkling water, a raisin can dance a vigorous tango for 20 minutes, and then a slower waltz for another hour or so.

Advertisement

Anyone with a few kitchen staples can do their own dancing raisins experiment.

We found that rotation, or spinning, was critically important for coaxing large objects to dance. Bubbles that cling to the bottom of an object can keep it aloft even after the top bubbles pop. But if the object starts to spin even a little bit, the bubbles underneath make the body spin even faster, which results in even more bubbles popping at the surface. And the sooner those bubbles are , the sooner the object can get back to its vertical dancing.

Small objects like raisins do not rotate as much as larger objects, but instead they do the twist, rapidly wobbling back and forth.

Modeling the bubbly flamenco

In the paper, we developed a mathematical model to predict how many trips to the surface we would expect an object like a raisin to make. In one experiment, we placed a 3D-printed sphere that acted as a model raisin in a glass of just-opened sparkling water. The sphere traveled from the bottom of the container to the top over 750 times in one hour.

The model incorporated the rate of bubble growth as well as the object's shape, size and surface roughness. It also took into account how quickly the fluid loses carbonation based on the container's geometry, and especially the flow created by all that bubbly activity.

Advertisement

Small objects covered in bubbles in carbonated water move upwards towards the surface and back down.

Bubble-coated raisins ‘dance' to the surface and plummet once their lifting agents have popped.

Saverio Spagnolie

The mathematical model helped us determine which forces influence the object's dancing the most. For example, the fluid drag on the object turned out to be relatively unimportant, but the ratio of the object's surface area to its volume was critical.

Looking to the future, the model also provides a way to determine some hard to measure quantities using more easily measured ones. For example, just by observing an object's dancing frequency, we can learn a lot about its surface at the microscopic level without to see those details directly.

Different dances in different theaters

These results aren't just interesting for carbonated beverage lovers, though. Supersaturated fluids exist in nature, too – magma is one example.

Advertisement

As magma in a volcano rises closer to the Earth's surface, it rapidly depressurizes, and dissolved gases from inside the volcano make a dash for the exit, just like the CO₂ in carbonated water. These escaping gases can form into large, high-pressure bubbles and emerge with such force that a volcanic eruption ensues.

The particulate matter in magma may not dance in the same way raisins do in soda water, but tiny objects in the magma may affect how these explosive play out.

The past decades have also seen an eruption of a different kind – thousands of scientific studies devoted to active matter in fluids. These studies look at things such as swimming microorganisms and the insides of our fluid-filled cells.

Most of these active do not exist in water but instead in more complicated biological fluids that contain the energy necessary to produce activity. Microorganisms absorb nutrients from the fluid around them to continue swimming. Molecular motors carry cargo along a superhighway in our cells by pulling nearby energy in the form of ATP from the environment.

Advertisement

Studying these systems can help scientists learn more about how the cells and bacteria in the human body function, and how life on this planet has evolved to its current .

Meanwhile, a fluid itself can behave strangely because of a diverse molecular composition and bodies moving around inside it. Many new studies have addressed the behavior of microorganisms in such fluids as mucus, for instance, which behaves like both a viscous fluid and an elastic gel. Scientists still have much to learn about these highly complex systems.

While raisins in soda water seem fairly simple when with microorganisms swimming through biological fluids, they offer an accessible way to study generic features in those more challenging settings. In both cases, bodies extract energy from their complex fluid environment while also affecting it, and fascinating behaviors ensue.

New insights about the physical world, from geophysics to biology, will continue to emerge from tabletop-scale experiments – and perhaps from right in the kitchen.The Conversation

Saverio Eric Spagnolie, Professor of Mathematics, University of Wisconsin-Madison

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Supreme Court kicks cases about tech companies’ First Amendment rights back to lower courts − but appears poised to block states from hampering online content moderation

Published

on

theconversation.com – Lynn Greenky, Professor Emeritus of Communication and Rhetorical Studies, Syracuse – 2024-07-01 15:26:42
How much power do social companies have over what users post?
Midnight Studio/iStock/Getty Images Plus

Lynn Greenky, Syracuse University

The has sent back to lower courts the about whether states can block social media companies such as Facebook and X, formerly Twitter, from regulating and controlling what users can post on their platforms.

Laws in Florida and Texas sought to impose restrictions on the internal policies and algorithms of social media platforms in ways that influence which posts will be promoted and spread widely and which will be made less visible or even .

In the unanimous decision, issued on July 1, 2024, the high court remanded the two cases, Moody v. NetChoice and NetChoice v. Paxton, to the 11th and 5th U.S. Circuit Courts of Appeals, respectively. The court admonished the lower courts for their failure to consider the full force of the laws' applications. It also warned the lower courts to consider the boundaries imposed by the Constitution against interference with private speech.

Advertisement

Contrasting views of social media sites

In their arguments before the court in February 2024, the two sides described competing visions of how social media fits into the often overwhelming flood of information that defines modern digital society.

The states said the platforms were mere conduits of communication, or “speech hosts,” similar to legacy telephone companies that were required to carry all calls and prohibited from discriminating against users. The states said that the platforms should have to carry all posts from users without discrimination among them based on what they were saying.

The states argued that the content moderation rules the social media companies imposed were not examples of the platforms themselves speaking – or choosing not to speak. Rather, the states said, the rules affected the platforms' behavior and caused them to censor certain views by allowing them to determine whom to allow to speak on which topics, which is outside First Amendment protections.

By contrast, the social media platforms, represented by NetChoice, a tech industry trade group, argued that the platforms' guidelines about what is acceptable on their sites are protected by the First Amendment's guarantee of speech free from government interference. The companies say their platforms are not public forums that may be subject to government regulation but rather private services that can exercise their own editorial judgment about what does or does not appear on their sites.

Advertisement

They argued that their policies were aspects of their own speech and that they should be to develop and implement guidelines about what is acceptable speech on their platforms based on their own First Amendment rights.

Here's what the First Amendment says and what it means.

A reframe by the Supreme Court

All the litigants – NetChoice, and Florida – framed the issue around the effect of the laws on the content moderation policies of the platforms, specifically whether the platforms were engaged in protected speech. The 11th U.S. Circuit Court of Appeals upheld a lower court preliminary injunction against the Florida law, holding the content moderation policies of the platforms were speech and the law was unconstitutional.

The 5th U.S. Circuit Court of Appeals came to the opposite conclusion and held that the platforms were not engaged in speech, but rather the platform's algorithms controlled platform behavior unprotected by the First Amendment. The 5th Circuit determined the behavior was censorship and reversed a lower court injunction against the Texas law.

The Supreme Court, however, reframed the inquiry. The court noted that the lower courts failed to consider the full range of activities the laws covered. Thus, while a First Amendment inquiry was in order, the decisions of the lower courts and the arguments by the parties were incomplete. The court added that neither the parties nor the lower courts engaged in a thorough analysis of whether and how the states' laws affected other elements of the platforms' products, such as Facebook's direct messaging applications, or even whether the laws have any impact on email providers or online marketplaces.

Advertisement

The Supreme Court directed the lower courts to engage in a much more exacting analysis of the laws and their implications and provided some guidelines.

First Amendment principles

The court held that content moderation policies reflect the constitutionally protected editorial choices of the platforms, at least regarding what the court as “heartland applications” of the laws – such as Facebook's News Feed and YouTube's homepage.

The Supreme Court required the lower courts to consider two core constitutional principles of the First Amendment. One is that the amendment protects speakers from being compelled to communicate messages they would prefer to exclude. Editorial discretion by entities, including social media companies, that compile and curate the speech of others is a protected First Amendment activity.

The other principle that the amendment precludes the government from controlling private speech, even for the purpose of balancing the marketplace of ideas. Neither state nor federal government may manipulate that marketplace for the purposes of presenting a more balanced array of viewpoints.

Advertisement

The court also affirmed that these principles apply to digital media in the same way they apply to traditional or legacy media.

In the 96-page opinion, Justice Elena Kagan wrote: “The First Amendment … does not go on leave when social media are involved.” For now, it appears the social media platforms will continue to control their content.The Conversation

Lynn Greenky, Professor Emeritus of Communication and Rhetorical Studies, Syracuse University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

Advertisement

The post Supreme Court kicks cases about tech companies' First Amendment rights back to lower courts − but appears poised to block states from hampering online content moderation appeared first on theconversation.com

Continue Reading

The Conversation

Disability community has long wrestled with ‘helpful’ technologies – lessons for everyone in dealing with AI

Published

on

theconversation.com – Elaine Short, Assistant Professor of Computer Science, Tufts – 2024-07-01 07:19:34

A robotic arm helps a disabled person paint a picture.

Jenna Schad /Tufts University

Elaine Short, Tufts University

You might have heard that artificial intelligence is going to revolutionize everything, save the world and give everyone superhuman powers. Alternatively, you might have heard that it will take your job, make you lazy and stupid, and make the world a cyberpunk dystopia.

Advertisement

Consider another way to look at AI: as an assistive technology – something that helps you function.

With that view, also consider a community of experts in giving and receiving assistance: the disability community. Many disabled people use technology extensively, both dedicated assistive technologies such as wheelchairs and general-use technologies such as smart home devices.

Equally, many disabled people professional and casual assistance from other people. And, despite stereotypes to the contrary, many disabled people regularly give assistance to the disabled and nondisabled people around them.

Disabled people are well experienced in receiving and giving social and technical assistance, which makes them a valuable source of insight into how everyone might relate to AI in the future. This potential is a key driver for my work as a disabled person and researcher in AI and robotics.

Advertisement

Actively learning to live with help

While virtually everyone values independence, no one is fully independent. Each of us depends on others to grow our food, care for us when we are ill, give us advice and emotional , and us in thousands of interconnected ways. Being disabled means support needs that are outside what is typical and therefore those needs are much more visible. Because of this, the disability community has reckoned more explicitly with what it means to need help to than most nondisabled people.

This disability community perspective can be invaluable in approaching new technologies that can assist both disabled and nondisabled people. You can't substitute pretending to be disabled for the experience of actually being disabled, but accessibility can benefit everyone.

The curb-cut effect – how technologies built for disabled people help everyone – has become a principle of good design.

This is sometimes called the curb-cut effect after the ways that putting a ramp in a curb to help a wheelchair user access the sidewalk also people with strollers, rolling suitcases and bicycles.

Partnering in assistance

You have probably had the experience of someone trying to help you without listening to what you actually need. For example, a parent or friend might “help” you clean and instead end up hiding everything you need.

Advertisement

Disability advocates have long battled this type of well-meaning but intrusive assistance – for example, by putting spikes on wheelchair handles to keep people from pushing a person in a wheelchair without being asked to or advocating for services that keep the disabled person in control.

The disabled community instead offers a model of assistance as a collaborative effort. Applying this to AI can help to ensure that new AI tools support human autonomy rather than taking over.

A key goal of my lab's work is to develop AI-powered assistive robotics that treat the user as an equal partner. We have shown that this model is not just valuable, but inevitable. For example, most people find it difficult to use a joystick to move a robot arm: The joystick can only move from front to back and side to side, but the arm can move in almost as many ways as a human arm.

The author discusses her work on robots that are designed to help people.

To help, AI can predict what someone is planning to do with the robot and then move the robot accordingly. Previous research assumed that people would ignore this help, but we found that people quickly figured out that the system is doing something, actively worked to understand what it was doing and tried to work with the system to get it to do what they wanted.

Advertisement

Most AI systems don't make this easy, but my lab's new approaches to AI empower people to influence robot behavior. We have shown that this results in better interactions in tasks that are creative, like painting. We also have begun to investigate how people can use this control to solve problems outside the ones the robots were designed for. For example, people can use a robot that is trained to carry a cup of to instead pour the water out to water their plants.

Training AI on human variability

The disability-centered perspective also raises concerns about the huge datasets that power AI. The very nature of data-driven AI is to look for common patterns. In general, the better-represented something is in the data, the better the model works.

If disability means having a body or mind outside what is typical, then disability means not being well-represented in the data. Whether it's AI systems designed to detect cheating on exams instead detecting students' disabilities or robots that fail to account for wheelchair users, disabled people's interactions with AI reveal how those systems are brittle.

One of my goals as an AI researcher is to make AI more responsive and adaptable to real human variation, especially in AI systems that learn directly from interacting with people. We have developed frameworks for testing how robust those AI systems are to real human teaching and explored how robots can learn better from human teachers even when those teachers change over time.

Advertisement

Thinking of AI as an assistive technology, and learning from the disability community, can help to ensure that the AI systems of the future serve people's needs – with people in the driver's seat.The Conversation

Elaine Short, Assistant Professor of Computer Science, Tufts University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Disability community has long wrestled with ‘helpful' technologies – lessons for everyone in dealing with AI appeared first on .com

Advertisement
Continue Reading

The Conversation

How was popcorn discovered? An archaeologist on its likely appeal for people in the Americas millennia ago

Published

on

theconversation.com – Sean Rafferty, Professor of Anthropology, at Albany, State University of New York – 2024-07-01 07:19:19

Could a spill by the cook fire have been popcorn's eureka moment?

Paul Taylor/Stone via Getty Images

Sean Rafferty, University at Albany, State University of New York

Curious Kids is a series for of all ages. If you have a question you'd like an expert to answer, send it to curiouskidsus@theconversation.com.

Advertisement

How was popcorn discovered? – Kendra, age 11, Penn Yan, New York


You have to wonder how people originally figured out how to eat some foods that are beloved . The cassava plant is toxic if not carefully processed through multiple steps. Yogurt is basically old milk that's been around for a while and contaminated with bacteria. And who discovered that popcorn could be a toasty, tasty treat?

These kinds of food mysteries are pretty hard to solve. Archaeology depends on solid remains to figure out what happened in the past, especially for people who didn't use any sort of writing. Unfortunately, most stuff people traditionally used made from wood, animal materials or cloth decays pretty quickly, and archaeologists like me never find it.

We have lots of evidence of hard stuff, such as pottery and stone tools, but softer things – such as leftovers from a meal – are much harder to find. Sometimes we get lucky, if softer stuff is found in very dry places that preserve it. Also, if stuff gets burned, it can last a very long time.

Corn's ancestors

Luckily, corn – also called maize – has some hard parts, such as the kernel shell. They're the bits at the bottom of the popcorn bowl that get caught in your teeth. And since you have to heat maize to make it edible, sometimes it got burned, and archaeologists find evidence that way. Most interesting of all, some plants, maize, contain tiny, rock-like fragments called phytoliths that can last for thousands of years.

Advertisement

green plant stalks with reddish tendrils

The ancestor of maize was a grass called teosinte.

vainillaychile/iStock via Getty Images Plus

Scientists are pretty sure they know how old maize is. We know maize was probably first farmed by Native Americans in what is now Mexico. Early farmers there domesticated maize from a kind of grass called teosinte.

Before farming, people would gather wild teosinte and eat the seeds, which contained a lot of starch, a carbohydrate like you'd find in bread or pasta. They would pick teosinte with the largest seeds and eventually started weeding and planting it. Over time, the wild plant developed into something like what we call maize today. You can tell maize from teosinte by its larger kernels.

There's evidence of maize farming from dry caves in Mexico as early as 9,000 years ago. From there, maize farming spread throughout North and South America.

Advertisement

Popped corn, preserved food

Figuring out when people started making popcorn is harder. There are several types of maize, most of which will pop if heated, but one variety, actually called “popcorn,” makes the best popcorn. Scientists have discovered phytoliths from Peru, as well as burned kernels, of this type of “poppable” maize from as early as 6,700 years ago.

cobs of popcorn over popped kernels, one showing popping on the cob

Each popcorn kernel is a seed, ready to burst when heated.

Rick Madonik/Toronto Star via Getty Images

You can imagine that popping maize kernels was first discovered by accident. Some maize probably fell into a cooking fire, and whoever was nearby figured out that this was a handy new way of preparing the food. Popped maize would last a long time and was easy to make.

Ancient popcorn was probably not much like the snack you might munch at the theater today. There was probably no salt and definitely no butter, since there were no cows to milk in the Americas yet. It probably wasn't served hot and was likely pretty chewy with the version you're used to today.

Advertisement

It's impossible to know exactly why or how popcorn was invented, but I would guess it was a clever way to preserve the edible starch in corn by getting rid of the little bit of inside each kernel that would make it more susceptible to spoiling. It's the heated water in the kernel escaping as steam that makes popcorn pop. The popped corn could then last a long time. What you may consider a tasty snack today probably started as a useful way of preserving and storing food.


Hello, curious kids! Do you have a question you'd like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the where you .

And since curiosity has no age limit – adults, let us know what you're wondering, too. We won't be able to answer every question, but we will do our best.The Conversation

Sean Rafferty, Professor of Anthropology, University at Albany, State University of New York

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Read More

The post How was popcorn discovered? An archaeologist on its likely appeal for people in the Americas millennia ago appeared first on .com

Continue Reading

News from the South

Trending