fbpx
Connect with us

The Conversation

Disinformation is rampant on social media – a social psychologist explains the tactics used against you

Published

on

Disinformation is rampant on social media – a social psychologist explains the tactics used against you

Disinformation campaigns use emotional and rhetorical tricks to try to get you to share propaganda and falsehoods.
hobo_018/E+ via Getty Images

H. Colleen Sinclair, Louisiana State University

Information warfare abounds, and everyone online has been drafted whether they know it or not.

Disinformation is deliberately generated misleading content disseminated for selfish or malicious purposes. Unlike misinformation, which may be shared unwittingly or with good intentions, disinformation aims to foment distrust, destabilize institutions, discredit good intentions, defame opponents and delegitimize sources of knowledge such as science and journalism.

Many governments engage in disinformation campaigns. For instance, the Russian has used images of celebrities to attract attention to anti-Ukraine propaganda. Meta, parent company of Facebook and Instagram, warned on Nov. 30, 2023, that China has stepped up its disinformation operations.

Disinformation is nothing new, and information warfare has been practiced by many countries, including the U.S. But the internet gives disinformation campaigns unprecedented reach. Foreign governments, internet trolls, domestic and international extremists, opportunistic profiteers and even paid disinformation agencies exploit the internet to spread questionable content. Periods of civil unrest, natural disasters, health crises and wars trigger anxiety and the hunt for information, which disinformation agents take advantage of.

Advertisement
Meta has uncovered and blocked sophisticated Chinese disinformation campaigns.

Certainly it’s worth watching for the warning signs for misinformation and dangerous speech, but there are additional tactics disinformation agents employ.

It’s just a joke

Hahaganda is a tactic in which disinformation agents use memes, political comedy from state-run outlets, or speeches to make light of serious matters, attack others, minimize violence or dehumanize, and deflect blame.

This approach provides an easy defense: If challenged, the disinformation agents can say, “Can’t you take a joke?” often followed by accusations of being too politically correct.

Shhh … tell everyone

Rumor-milling is a tactic in which the disinformation agents claim to have exclusive access to secrets they allege are being purposefully concealed. They indicate that you will “only hear this here” and will imply that others are unwilling to share the alleged truth – for example, “The won’t this” or “The government doesn’t want you to know” and “I shouldn’t be telling you this … .”

Advertisement

But they do not insist that the information be kept secret, and will instead include encouragement to share it – for example, “Make this go viral” or “Most people won’t have the courage to share this.” It’s important to question how an author or speaker could have by such “secret” information and what their motive is to prompt you to share it.

People are saying

Often disinformation has no real evidence, so instead disinformation agents will find or make up people to their assertions. This impersonation can take multiple forms. Disinformation agents will use anecdotes as evidence, especially sympathetic stories from vulnerable groups such as women or .

Similarly, they may disseminate “concerned citizens’” perspectives. These layperson experts present their social identity as providing the authority to speak on a matter; “As a mother …,” “As a veteran …,” “As a officer ….” Convert communicators, or people who allegedly change from the “wrong” position to the “right” one, can be especially persuasive, such as the woman who got an but regretted it. These people often don’t actually exist or may be coerced or paid.

If ordinary people don’t suffice, fake experts may be used. Some are fabricated, and you can watch out for “inauthentic user” behavior, for example, by checking X – formerly Twitter – accounts using the Botometer. But fake experts can come in different varieties.

Advertisement
  • A faux expert is someone used for their title but doesn’t have actual relevant expertise.
  • A pseudoexpert is someone who claims relevant expertise but has no actual training.
  • A junk expert is a sellout. They may have had expertise once but now say whatever is profitable. You can often find these people have supported other dubious claims – for example, that smoking doesn’t cause cancer – or work for institutes that regularly produce questionable “scholarship.”
  • An echo expert is when disinformation sources cite each other to provide credence for their claims. China and Russia routinely cite one another’s newspapers.
  • A stolen expert is someone who exists, but they weren’t actually contacted and their research is misinterpreted. Likewise, disinformation agents also steal credibility from known sources, such as by typosquatting, the practice of setting up a domain name that closely resembles a legitimate organization’s.

You can check whether accounts, anecdotal or scientific, have been verified by other reliable sources. Google the name. Check expertise status, source validity and interpretation of research. Remember, one story or interpretation is not necessarily representative.

It’s all a conspiracy

Conspiratorial narratives involve some malevolent force – for example, “the deep state,” – engaged in covert actions with the aim to cause harm to society. That certain conspiracies such as MK-Ultra and Watergate have been confirmed is often offered as evidence for the validity of new unfounded conspiracies.

Nonetheless, disinformation agents find that constructing a conspiracy is an effective means to remind people of past reasons to distrust governments, scientists or other trustworthy sources.

But extraordinary claims require extraordinary evidence. Remember, the conspiracies that were ultimately unveiled had evidence – often from sources like investigative journalists, scientists and government investigations. Be particularly wary of conspiracies that try to delegitimize knowledge-producing institutions like universities, research labs, government agencies and news outlets by claiming that they are in on a -up.

Basic tips for resisting disinformation and misinformation include thinking twice before sharing social media posts that trigger emotional responses like anger and fear and checking the sources of posts that make unusual or extraordinary claims.

Good vs. evil

Disinformation often serves the dual purpose of making the originator look good and their opponents look bad. Disinformation takes this further by painting issues as a battle between good and evil, using accusations of evilness to legitimize violence. Russia is particularly fond of accusing others of being secret Nazis, pedophiles or Satanists. Meanwhile, they often depict their soldiers as helping children and the elderly.

Advertisement

Be especially wary of accusations of atrocities like genocide, especially under the attention-grabbing “breaking news” headline. Accusations abound. Verify the facts and how the information was obtained.

Are you with us or against us?

A false dichotomy narrative sets up the reader to believe that they have one of two mutually exclusive options; a good or a bad one, a right or a wrong one, a red pill or a blue pill. You can accept their version of reality or be an idiot or “sheeple.”

There are always more options than those being presented, and issues are rarely so black and white. This is just one of the tactics in brigading, where disinformation agents seek to silence dissenting viewpoints by casting them as the wrong choice.

Turning the tables

Whataboutism is a classic Russian disinformation technique they use to deflect attention from their own wrongdoings by alleging the wrongdoings of others. These allegations about the actions of others may be true or false but are nonetheless irrelevant to the matter at hand. The potential past wrongs of one group does not mean you should ignore the current wrongs of another.

Advertisement

Disinformation agents also often cast their group as the wronged party. They only engage in disinformation because their “enemy” engages in disinformation against them; they only attack to defend; and their reaction was appropriate, while that of others was an overreaction. This type of competitive victimhood is particularly pervasive when groups have been embedded in a long-lasting conflict.

In all of these cases, the disinformation agent is aware that they are deflecting, misleading, trolling or outright fabricating. If you don’t believe them, they at least want to make you question what, if anything, you can believe.

You often look into the things you buy rather than taking the advertising at face value before you hand over your money. This should also go for what information you buy into.The Conversation

H. Colleen Sinclair, Associate Research Professor of Social Psychology, Louisiana State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

The Conversation

Will your phone one day let you smell as well as see and hear what’s on the other end of a call?

Published

on

theconversation.com – Jian Liu, Assistant Professor of Electrical Engineering and Computer Science, of Tennessee – 2024-09-16 07:27:05

Phones that transmit odors seem like a great idea, but careful what you wish for!

Teo Mahatmana/iStock via Getty Images

Jian Liu, University of Tennessee

Advertisement

Curious Kids is a for of all ages. If you have a question you’d like an expert to answer, send it to curiouskidsus@theconversation.com.


Is it possible to make a phone through which we can smell, like we can hear and see? – Muneeba K., age 10, Pakistan


Imagine this: You pick up your phone for a call with a friend. Not only can you see their face and hear their voice, but you can also smell the cookies they just baked. It sounds like something out of a science fiction movie, but could it actually happen?

I’m a computer scientist who studies how machines sense the world.

What phones do now

When you listen to music or to someone on your phone, you can hear the sound through the built-in speakers. These speakers convert digital signals into physical vibrations using a tiny component called a diaphragm. Your ears sense those vibrations as sound waves.

Advertisement

Your phone also has a screen that displays images and . The screen uses tiny dots known as pixels that consist of three primary colors: red, green and blue. By mixing these colors in different ways, your phone can show you everything from beautiful beach scenes to cute puppies.

Smelling with phones

Now how about the sense of smell? Smells are created by tiny particles called molecules that float through the air and reach your nose. Your nose then sends signals to your brain, which identifies the smell.

So, could your phone send these smell molecules to you? Scientists are working on it. Think about how your phone screen works. It doesn’t have every color in the world stored inside it. Instead, it uses just three colors to create millions of different hues and shades.

How your sense of smell works.

Now imagine something similar for smells. Scientists are developing digital scent technology that uses a small number of different cartridges, each containing a specific scent. Just like how pixels mix three colors to create images, these scent cartridges could mix to create different smells.

Advertisement

Just like images on your phone are made of digital codes that represent combinations of pixels, smells produced by a future phone could be created using digital codes. Each smell could have a specific recipe made up of different amounts of the ingredients in the cartridges.

When you a digital scent code, your phone could mix tiny amounts of the different scents from the cartridges to create the desired smell. This mix would then be released through a small vent on the phone, allowing you to smell it. With just a few cartridges, your phone could potentially create a huge variety of smells, much like how red, green and blue pixels can create countless colors.

Researchers and companies are already working on digital odor makers like this.

The challenges to making smell phones

Creating a phone that can produce smells involves several challenges. One is designing a system that can produce thousands of different smells using only a few cartridges. Another is how to control how strong a scent should be and how long a phone should emit it. And phones will also need to sense odors near them and convert those to digital codes so your friends’ phones can send smells to you.

Advertisement

The cartridges should also be easy to refill, and the chemicals in them be safe to breathe. These hurdles make it a tricky but exciting area of research.

An odiferous future

Even though we’re not there yet, scientists and engineers are working hard to make smell phones a reality. Maybe one day you’ll be able to not only see and hear your friend’s birthday party over the phone, but also smell the candles they blew out!


Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the where you .

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.The Conversation

Jian Liu, Assistant Professor of Electrical Engineering and Computer Science, University of Tennessee

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Will your phone one day let you smell as well as see and hear what’s on the other end of a call? appeared first on .com

Advertisement
Continue Reading

The Conversation

a double shot of US history

Published

on

theconversation.com – Kyle G. Volk, Professor of History, of Montana – 2024-09-16 07:28:46

Having a beer in Raceland, La.

Russell Lee for Farm Security Administration/WPA

Kyle G. Volk, University of Montana

Advertisement

Text saying: Uncommon Courses, from The Conversation

Uncommon Courses is an occasional series from U.S. highlighting unconventional approaches to teaching.

Title of course:

“Intoxication Nation: Alcohol in American History”

What prompted the idea for the course?

I wanted to get excited about studying the past by learning about something that is very much a part of their own lives.

Alcohol – somewhat surprisingly to me at first – featured prominently in my own research on minority rights and U.S. democracy in the mid-19th century. As a result, I knew quite a bit about the temperance movement and conflicts over prohibition during that period. Designing this course me to broaden my expertise.

Advertisement

What does the course explore?

Prohibition is a must-do subject. Students expect it. But I several hundred years of history: from the 17th-century invention of rum – as a byproduct of sugar produced by enslaved people – to the rise of craft beer and craft spirits in the 21st century.

A faded poster with an illustration of a person about to smash a huge bottle of alcohol, and the message 'Close the saloons' at the top.

A temperance poster from the World War I era.

Office of Naval Records and Library via National Archives Catalog

Along the way, I’m thrilled when students get excited about details that allow them to taste a more complicated historical cocktail. For example, they learn why white women’s production of hard cider was crucial to the survival of colonial Virginia. The short answer: Potable was in short supply, alcoholic drinks were far healthier, and white – and their indentured and enslaved workforce – were busy raising tobacco. It fell to women to turn fruit into salvation.

Why is this course relevant now?

Alcohol remains a big and almost inescapable part of American society. But of late, Americans have been drinking differently – and thinking about drinking differently.

Advertisement

Examples abound. Alcohol producers, we learn, now face competition from legalized weed. Drinking l evels rose during the COVID-19 pandemic, yet interest is declining among Gen Zers. The “wine mom” culture that brought some mothers together now faces mounting criticism.

And, of course, there’s the never-ending debate about the health benefits and risks of alcohol. Of late, the risks seem to be dominating headlines.

What’s a critical lesson from the course?

Alcohol has been a highly controversial, central aspect of the American experience, shaping virtually all sectors of our society – political and constitutional, business and economic, social and cultural.

What materials does the course feature?

What will the course prepare students to do?

Like any history course, this one aims to develop student’s analytical, written, research and verbal skills. In lots of ways, the topic is just a tool to get students to grow their brains. But I also seek to grow students’ critical awareness of the place of alcohol in their own lives. The course has also informed students’ paths after graduation – including some who wound up working in the alcohol industry or recovery .The Conversation

Kyle G. Volk, Professor of History, University of Montana

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post a double shot of US history appeared first on .com

Advertisement
Continue Reading

The Conversation

Sunflowers make small moves to maximize their Sun exposure − physicists can model them to predict how they grow

Published

on

theconversation.com – Chantal Nguyen, Postdoctoral Associate at the BioFrontiers Institute, of Colorado Boulder – 2024-09-13 07:31:40

Sunflowers use tiny movements to follow the Sun’s path throughout the day.

AP Photo/Charlie Riedel

Chantal Nguyen, University of Colorado Boulder

Advertisement

Most of us aren’t spending our days watching our houseplants grow. We see their signs of only occasionally – a new leaf unfurled, a stem leaning toward the window.

But in the summer of 1863, Charles Darwin lay ill in bed, with nothing to do but watch his plants so closely that he could detect their small movements to and fro. The tendrils from his cucumber plants swept in circles until they encountered a stick, which they proceeded to twine around.

“I am getting very much amused by my tendrils,” he wrote.

This amusement blossomed into a decadeslong fascination with the little-noticed world of plant movements. He compiled his detailed observations and experiments in a 1880 book called “The Power of Movement in Plants.”

Advertisement

A zig-zagging line showing the movement of a leaf.

A diagram tracking the circumnutation of a leaf over three days.

Charles Darwin

In one study, he traced the motion of a carnation leaf every few hours over the course of three days, revealing an irregular looping, jagged path. The swoops of cucumber tendrils and the zags of carnation leaves are examples of inherent, ubiquitous plant movements called circumnutations – from the Latin circum, meaning circle, and nutare, meaning to nod.

Circumnutations vary in size, regularity and timescale across plant species. But their exact function remains unclear.

I’m a physicist interested in understanding collective behavior in living . Like Darwin, I’m captivated by circumnutations, since they may underlie more complex phenomena in groups of plants.

Advertisement

Sunflower patterns

A 2017 study revealed a fascinating observation that got my colleagues and me wondering about the role circumnutations could play in plant growth patterns. In this study, researchers found that sunflowers grown in a dense row naturally formed a near-perfect zigzag pattern, with each plant leaning away from the row in alternating directions.

This pattern the plants to avoid shade from their neighbors and maximize their exposure to sunlight. These sunflowers flourished.

Researchers then planted some plants at the same density but constrained them so that they could grow only upright without leaning. These constrained plants produced less oil than the plants that could lean and get the maximum amount of sun.

While farmers can’t grow their sunflowers quite this close together due to the potential for disease spread, in the future they may be able to use these patterns to up with new planting strategies.

Advertisement

Self-organization and randomness

This spontaneous pattern formation is a neat example of self-organization in nature. Self-organization refers to when initially disordered systems, such as a jungle of plants or a swarm of bees, achieve order without anything controlling them. Order emerges from the interactions between individual members of the system and their interactions with the .

Somewhat counterintuitively, noise – also called randomness – facilitates self-organization. Consider a colony of ants.

Ants secrete pheromones behind them as they crawl toward a food source. Other ants find this food source by the pheromone trails, and they further reinforce the trail they took by secreting their own pheromones in turn. Over time, the ants converge on the best path to the food, and a single trail prevails.

But if a shorter path were to become possible, the ants would not necessarily find this path just by following the existing trail.

Advertisement

If a few ants were to randomly deviate from the trail, though, they might stumble onto the shorter path and create a new trail. So this randomness injects a spontaneous change into the ants’ system that allows them to explore alternative scenarios.

Eventually, more ants would follow the new trail, and soon the shorter path would prevail. This randomness helps the ants adapt to changes in the environment, as a few ants spontaneously seek out more direct ways to their food source.

A group of honeybees spread out standing on honeycomb.

Beehives are an example of self-organization in nature.

Martin Ruegner/Stone via Getty Images

In biology, self-organized systems can be found at a range of scales, from the patterns of proteins inside cells to the socially complex colonies of honeybees that collectively build nests and forage for nectar.

Advertisement

Randomness in sunflower self-organization

So, could random, irregular circumnutations underpin the sunflowers’ self-organization?

My colleagues and I set out to explore this question by following the growth of young sunflowers we planted in the lab. Using cameras that imaged the plants every five minutes, we tracked the movement of the plants to see their circumnutatory paths.

We saw some loops and spirals, and lots of jagged movements. These ultimately appeared largely random, much like Darwin’s carnation. But when we placed the plants together in rows, they began to move away from one another, forming the same zigzag configurations that we’d seen in the previous study.

Five plants and a diagram showing loops and jagged lines that represent small movements made by the plants.

Tracking the circumnutations made by young sunflower plants.

Chantal Nguyen

Advertisement

We analyzed the plants’ circumnutations and found that at any given time, the direction of the plant’s motion appeared completely independent of how it was moving about half an hour earlier. If you measured a plant’s motion once every 30 minutes, it would appear to be moving in a completely random way.

We also measured how much the plant’s leaves grew over the course of two weeks. By putting all of these results together, we sketched a picture of how a plant moved and grew on its own. This information allowed us to computationally model a sunflower and simulate how it behaves over the course of its growth.

A sunflower model

We modeled each plant simply as a circular crown on a stem, with the crown expanding according to the growth rate we measured experimentally. The simulated plant moved in a completely random way, taking a “step” every half hour.

We created the model sunflowers with circumnutations of lower or higher intensity by tweaking the step sizes. At one end of the spectrum, sunflowers were much more likely to take tiny steps than big ones, leading to slow, minimal movement on average. At the other end were sunflowers that are equally as likely to take large steps as small steps, resulting in highly irregular movement. The real sunflowers we observed in our experiment were somewhere in the middle.

Advertisement

Plants require light to grow and have evolved the ability to detect shade and alter the direction of their growth in response.

We wanted our model sunflowers to do the same thing. So, we made it so that two plants that get too close to each other’s shade begin to lean away in opposite directions.

Finally, we wanted to see whether we could replicate the zigzag pattern we’d observed with the real sunflowers in our model.

First, we set the model sunflowers to make small circumnutations. Their shade avoidance responses pushed them away from each other, but that wasn’t enough to produce the zigzag – the model plants stayed stuck in a line. In physics, we would call this a “frustrated” system.

Advertisement

Then, we set the plants to make large circumnutations. The plants started moving in random patterns that often brought the plants closer together rather than farther apart. Again, no zigzag pattern like we’d seen in the field.

But when we set the model plants to make moderately large movements, similar to our experimental measurements, the plants could self-organize into a zigzag pattern that gave each sunflower optimal exposure to light.

So, we showed that these random, irregular movements helped the plants explore their surroundings to find desirable arrangements that benefited their growth.

Plants are much more dynamic than people give them credit for. By taking the time to follow them, scientists and farmers can unlock their secrets and use plants’ movement to their advantage.The Conversation

Chantal Nguyen, Postdoctoral Associate at the BioFrontiers Institute, University of Colorado Boulder

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Sunflowers make small moves to maximize their Sun exposure − physicists can model them to predict how they grow appeared first on .com

Advertisement
Continue Reading

Trending