Connect with us

The Conversation

Seeing what the naked eye can’t − 4 essential reads on how scientists bring the microscopic world into plain sight

Published

on

Seeing what the naked eye can’t − 4 essential reads on how scientists bring the microscopic world into plain sight

This microscopy image shows the retina of a mouse, laid flat and made fluorescent.
Kenyoung Kim, Wonkyu Ju and Mark Ellisman/National Center for Microscopy and Imaging Research, University of California, San Diego via Flickr, CC BY-NC

Vivian Lam, The Conversation

The microscope is an iconic symbol of the life sciences – and for good reason. From the discovery of the existence of cells to the structure of DNA, microscopy has been a quintessential tool of the field, unlocking new dimensions of the living world not only for scientists but also for the general public.

For the life sciences, where understanding the function of a living thing often requires interpreting its form, imaging is vital to confirming theories and revealing what is yet unknown.

This selection of stories from The Conversation’s archive presents a few ways in which microscopy has contributed to different forms of scientific knowledge, including techniques that take visualization beyond sight altogether.

1. Seeing as identifying

Over the past few centuries, the microscope has undergone a gradual but significant evolution. Each advance has allowed researchers to see increasingly smaller and more fragile structures and biomolecules at increasingly higher resolution – from cells, to the structures within cells, to the structures within the structures within cells, down to atoms.

But there is still a resolution gap between the smallest and largest structures of the cell. Biophysicist Jeremy Berg drew an analogy to Google Maps: Though scientists could see the city as a whole and individual houses, they couldn’t make out the neighborhoods.

“Seeing these neighborhood-level details is essential to being able to understand how individual components work together in the environment of a cell,” he writes.

Scientists are working to bridge that resolution gap. Improvements to the 2014 Nobel Prize-winning superresolution microscopy, for example, have enhanced the study of lengthy processes like cell division by capturing images across a range of size and time scales simultaneously, bringing clarity to details traditional microscopes tend to blur.

Cryo-ET image of SARS-CoV-2
Cryo-electron tomography shows what molecules look like in high resolution – in this case, the virus that causes COVID-19.
Nanographics, CC BY-SA

Another technique, cryo-electron microscopy, or cryo-EM, won a Nobel Prize in 2017 for bringing even more complex, dynamic molecules into view by flash-freezing them. This creates a protective glasslike shell around samples as they’re bombarded by a beam of electrons to create their photo op. Cryo-ET, a specialized type of cryo-EM, can construct 3D images of molecular structures within their natural environments.

These techniques not only generate images at or near atomic resolution but also preserve the natural shape of difficult-to-capture biomolecules of interest. Researchers were able to use cryo-EM, for instance, to capture the elusive structure of the protein on the surface of the shape-shifting hepatitis C virus, providing key information for a future vaccine.

Further enhancements to science’s visual acuity will reveal more of the fine details of the building blocks of life.

“I anticipate seeing new theories on how we understand cells, moving from disorganized bags of molecules to intricately organized and dynamic systems,” writes Berg.

2. Seeing as scoping

Microscopy images are often framed as snapshots – circumscribed parts of a whole that have been magnified to reveal their hidden features. But nothing in an organism works in isolation. After discerning individual components, scientists are tasked with charting how they interact with each other in the macrosystem of the body. Figuring this out requires not only identifying every component that makes up a particular cell, tissue and organ but also placing them in relation to each other – in other words, making a map.

Researchers have been charting the brain by stitching together multiple snapshots like a photo mosaic. They use different techniques to label a specific cell type and then image the whole brain at high resolution. Layer by layer, each run-through creates an increasingly detailed and more complete model. Neuroscientist Yongsoo Kim likens the process to a satellite image of the brain. Combining millions of these photos allows researchers to zoom into the weeds and zoom out to a bird’s-eye view.

Stiched high-resolution microscopy image of mouse brain.
Zooming in on this image of a mouse brain reveals rectangular lines where images were stitched together, with each colored dot representing a specific brain cell type.
Yongsoo Kim, CC BY-NC-ND

But building a map of a city, however detailed, is not the same as understanding its rhythm and atmosphere. Likewise, knowing where every cell is located relative to each other doesn’t necessarily tell researchers how they function or interact. Just as important as charting out the landscape of an organ is coming up with a working theory of how it all fits together and performs as a whole. Right now, Kim notes, analysis lags behind technical advances in data collection.

“Incredibly rich, high-resolution brain mapping presents a great opportunity for neuroscientists to deeply ponder what this new data says about how the brain works,” Kim writes. “Though there are still many unknowns about the brain, these new tools and techniques could help bring them to light.”

3. Seeing as recognizing

Every improvement in technology brings a parallel improvement in the data it collects, both in quality and in quantity. But that data is only useful insofar as researchers are able to analyze it – high granularity isn’t helpful if those details aren’t appreciable, and high output isn’t beneficial if it’s too overwhelming to organize.

Automated microscopes, for example, have made it possible to take time-lapse images of cells, resulting in massive amounts of data that require manual sifting. Neuroscientist Jeremy Linsley and his team encountered this dilemma in their own work on neurodegenerative disease. They’ve been relying on an army of interns to scour hundreds of thousands of images of neurons and tally each death – a slow and expensive process.

Microscopy images showing rat neurons before and after treatment with glutamate; the neurons are colored green when alive and yellow when dead
These images show living neurons colored green and dead neurons colored yellow.
Jeremy Linsley, CC BY-NC-ND

So they turned to artificial intelligence. Researchers can train an AI model to recognize specific patterns by feeding it many sample images, pointing out structures of interest and extrapolating the algorithm to new contexts. Linsley and his team developed a model to distinguish between living and dead neurons with greater speed and accuracy than people trained to do the same task.

They also opened the black box of the model to figure out how it was finding dead cells, revealing new signals of neuron death that researchers previously weren’t aware of because they weren’t obvious to the human eye.

“By taking out human guesswork, (AI models) increase the reproducibility and speed of research and can help researchers discover new phenomena in images that they would otherwise not have been able to easily recognize,” writes Linsley.

4. Seeing as appreciating

Even before they had the instruments to zoom in on samples, researchers had a tool in their arsenal to study the living world that they still use today: art.

Illustration of cells in a cork from Robert Hooke's Micrographia
This illustration from Robert Hooke’s ‘Micrographia’ shows the structure of cells in a cork.
Robert Hooke/National Library of Wales via Wikimedia Commons

Centuries ago, scientists and artists examined plants, animals and anatomy through illustration. Sketches of unfamiliar species in their natural environments aided in their classification, and drawings of the human body advanced study of its structure and function. With the help of the printing press, these artistic renderings – which later included the view under the lenses of early microscopes – popularized scientific knowledge about the natural world.

Though hand drawings have since given way to advanced imaging techniques and computer models, the legacy of communicating science through art continues. Scientific publications and BioArt competitions highlight laboratory images and videos to share the awe and wonder of studying the natural world with the general public. Using visualizations in classrooms and art museums can also promote science literacy by giving students a chance to look through the eye of the microscope as a scientist would.

Biologist and BioArt Awards judge Chris Curran believes that making visible the processes and concepts of science can grant a greater depth of understanding of the natural world necessary to being an informed citizen.

“That those images and videos are often beautiful is an added benefit,” she writes.

This video of cells migrating in a zebra fish embryo won first place in the 2022 Nikon Small World in Motion Competition.

And the abstract qualities of science can be made tangible in ways that don’t involve sight. Proteins, for instance, can be translated into music by mapping their physical properties into sound: amino acids turn into notes, while structural loops become tempos and motifs. Computational biologists Peng Zhang and Yuzong Chen enhanced the musicality of these mapping techniques by basing them on different music styles, such as that of Chopin. Consequently, a protein that prevents cancer formation, p53, sounds toccata-like, and the protein that binds to the hormone and neurotransmitter oxytocin flutters with recurring motifs.

Framing scientific images as art often requires no more than a change in perspective. And uncovering the poetry of science, many researchers would agree, can help reveal the artistry of life.The Conversation

Vivian Lam, Associate Health and Biomedicine Editor, The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Rural hospitals will be hit hard by Trump’s signature spending package

Published

on

theconversation.com – Lauren S. Hughes, State Policy Director, Farley Health Policy Center; Associate Professor of Family Medicine, University of Colorado Anschutz Medical Campus – 2025-07-06 13:38:00


The 2025 federal spending package signed by President Trump cuts Medicaid funding by over $1 trillion across a decade, risking 11.8 million Americans losing health coverage. Rural Americans—nearly 20% of the population—are especially vulnerable, as they rely heavily on Medicaid and face increased work requirements and red tape that will reduce coverage. These cuts will force rural hospitals to reduce services, lay off staff, delay equipment purchases, or close entirely. Despite a $50 billion Rural Health Transformation fund, the amount is insufficient to offset $155 billion in lost federal spending. Hospital closures threaten not only health access but also rural economies and the national economy.

Health policy experts predict that cuts to Medicaid will push more rural hospitals to close.
sneakpeekpic via iStock / Getty Images Plus

Lauren S. Hughes, University of Colorado Anschutz Medical Campus and Kevin J. Bennett, University of South Carolina

The public health provisions in the massive spending package that President Donald Trump signed into law on July 4, 2025, will reduce Medicaid spending by more than US$1 trillion over a decade and result in an estimated 11.8 million people losing health insurance coverage.

As researchers studying rural health and health policy, we anticipate that these reductions in Medicaid spending, along with changes to the Affordable Care Act, will disproportionately affect the 66 million people living in rural America – nearly 1 in 5 Americans.

People who live in rural areas are more likely to have health insurance through Medicaid and are at greater risk of losing that coverage. We expect that the changes brought about by this new law will lead to a rise in unpaid care that hospitals will have to provide. As a result, small, local hospitals will have to make tough decisions that include changing or eliminating services, laying off staff and delaying the purchase of new equipment. Many rural hospitals will have to reduce their services or possibly close their doors altogether.

Hits to rural health

The budget legislation’s biggest effect on rural America comes from changes to the Medicaid program, which represent the largest federal rollback of health insurance coverage in the U.S. to date.

First, the legislation changes how states can finance their share of the Medicaid program by restricting where funds states use to support their Medicaid programs can come from. This bill limits how states can tax and charge fees to hospitals, managed care organizations and other health care providers, and how they can use such taxes and fees in the future to pay higher rates to providers under Medicaid. These limitations will reduce payments to rural hospitals that depend upon Medicaid to keep their doors open.

Rural hospitals play a crucial role in health care access.

Second, by 2027, states must institute work requirements that demand most Medicaid enrollees work 80 hours per month or be in school at least half time. Arkansas’ brief experiment with work requirements in 2018 demonstrates that rather than boost employment, the policy increases bureaucracy, hindering access to health care benefits for eligible people. States will also now be required to verify Medicaid eligibility every six months versus annually. That change also increases the risk people will lose coverage due to extra red tape.

The Congressional Budget Office estimates that work requirements instituted through this legislative package will result in nearly 5 million people losing Medicaid coverage. This will decrease the number of paying patients at rural hospitals and increase the unpaid care hospitals must provide, further damaging their ability to stay open.

Additionally, the bill changes how people qualify for the premium tax credits within the Affordable Care Act Marketplace. The Congressional Budget Office estimates that this change, along with other changes to the ACA such as fewer and shorter enrollment periods and additional requirements for documenting income, will reduce the number of people insured through the ACA Marketplace by about 3 million by 2034. Premium tax credits were expanded during the COVID-19 pandemic, helping millions of Americans obtain coverage who previously struggled to do so. This bill lets these expanded tax credits expire, which with may result in an additional 4.2 million people becoming uninsured.

An insufficient stop-gap

Senators from both sides of the aisle have voiced concerns about the legislative package’s potential effects on the financial stability of rural hospitals and frontier hospitals, which are facilities located in remote areas with fewer than six people per square mile. As a result, the Senate voted to set aside $50 billion over the next five years for a newly created Rural Health Transformation Program.

These funds are to be allocated in two ways. Half will be directly distributed equally to states that submit an application that includes a rural health transformation plan detailing how rural hospitals will improve the delivery and quality of health care. The remainder will be distributed to states in varying amounts through a process that is currently unknown.

While additional funding to support rural health facilities is welcome, how it is distributed and how much is available will be critical. Estimates suggest that rural areas will see a reduction of $155 billion in federal spending over 10 years, with much of that concentrated in 12 states that expanded Medicaid under the Affordable Care Act and have large proportions of rural residents.

That means $50 billion is not enough to offset cuts to Medicaid and other programs that will reduce funds flowing to rural health facilities.

An older bearded white man in a yellow shirt sits on a hospital bed in an exam room
Americans living in rural areas are more likely to be insured through Medicaid than their urban counterparts.
Halfpoint Images/Moment via Getty Images

Accelerating hospital closures

Rural and frontier hospitals have long faced hardship because of their aging infrastructure, older and sicker patient populations, geographic isolation and greater financial and regulatory burdens. Since 2010, 153 rural hospitals have closed their doors permanently or ceased providing inpatient services. This trend is particularly acute in states that have chosen not to expand Medicaid via the Affordable Care Act, many of which have larger percentages of their residents living in rural areas.

According to an analysis by University of North Carolina researchers, as of June 2025 338 hospitals are at risk of reducing vital services, such as skilled nursing facilities; converting to an alternative type of health care facility, such as a rural emergency hospital; or closing altogether.

Maternity care is especially at risk.

Currently more than half of rural hospitals no longer deliver babies. Rural facilities serve fewer patients than those in more densely populated areas. They also have high fixed costs, and because they serve a high percentage of Medicaid patients, they rely on payments from Medicaid, which tends to pay lower rates than commercial insurance. Because of these pressures, these units will continue to close, forcing women to travel farther to give birth, to deliver before going full term and to deliver outside of traditional hospital settings.

And because hospitals in rural areas serve relatively small populations, they lack negotiating power to obtain fair and adequate payment from private health insurers and affordable equipment and supplies from medical companies. Recruiting and retaining needed physicians and other health care workers is expensive, and acquiring capital to renovate, expand or build new facilities is increasingly out of reach.

Finally, given that rural residents are more likely to have Medicaid than their urban counterparts, the legislation’s cuts to Medicaid will disproportionately reduce the rate at which rural providers and health facilities are paid by Medicaid for services they offer. With many rural hospitals already teetering on closure, this will place already financially fragile hospitals on an accelerated path toward demise.

Far-reaching effects

Rural hospitals are not just sources of local health care. They are also vital economic engines.

Hospital closures result in the loss of local access to health care, causing residents to choose between traveling longer distances to see a doctor or forgoing the services they need.

But hospitals in these regions are also major employers that often pay some of the highest wages in their communities. Their closure can drive a decline in the local tax base, limiting funding available for services such as roads and public schools and making it more difficult to attract and retain businesses that small towns depend on. Declines in rural health care undermine local economies.

Furthermore, the country as a whole relies on rural America for the production of food, fuel and other natural resources. In our view, further weakening rural hospitals may affect not just local economies but the health of the whole U.S. economy.The Conversation

Lauren S. Hughes, State Policy Director, Farley Health Policy Center; Associate Professor of Family Medicine, University of Colorado Anschutz Medical Campus and Kevin J. Bennett, Professor of Family and Preventive Medicine, University of South Carolina

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Rural hospitals will be hit hard by Trump’s signature spending package appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Center-Left

This content critically assesses a Republican-backed spending package signed by former President Donald Trump, highlighting its negative impacts on Medicaid and rural healthcare. The detailed discussion of the potential harm to vulnerable populations, emphasis on Medicaid cuts, and skepticism about work requirements align with a Center-Left perspective concerned with social welfare and public health. While it acknowledges bipartisan concern about rural hospital funding, the overall tone and focus on the consequences of policy changes reflect a moderate progressive lean rather than a purely neutral or conservative viewpoint.

Continue Reading

The Conversation

I’m a physician who has looked at hundreds of studies of vaccine safety, and here’s some of what RFK Jr. gets wrong

Published

on

theconversation.com – Jake Scott, Clinical Associate Professor of Infectious Diseases, Stanford University – 2025-06-26 07:31:00


Robert F. Kennedy Jr., since becoming Health and Human Services secretary, has made many false claims about vaccines, including exaggerating mandatory shots for children and alleging conflicts of interest among vaccine advisers. In reality, children receive about 30-32 required vaccine doses protecting against 10-12 diseases, far fewer than his claimed 92. Modern vaccines contain far fewer antigens and improved adjuvants, reducing immune burden. Controlled trials, including placebo comparisons, have tested all routine vaccines extensively. U.S. monitoring systems track vaccine safety continuously. Allegations of widespread conflicts of interest among advisers are unfounded, and vaccines have significantly reduced childhood illnesses and deaths.

Public health experts worry that factually inaccurate statements by Robert F. Kennedy Jr. threaten the public’s confidence in vaccines.
Andrew HarnikGetty Images

Jake Scott, Stanford University

In the four months since he began serving as secretary of the Department of Health and Human Services, Robert F. Kennedy Jr. has made many public statements about vaccines that have cast doubt on their safety and on the objectivity of long-standing processes established to evaluate them.

Many of these statements are factually incorrect. For example, in a newscast aired on June 12, 2025, Kennedy told Fox News viewers that 97% of federal vaccine advisers are on the take. In the same interview, he also claimed that children receive 92 mandatory shots. He has also widely claimed that only COVID-19 vaccines, not other vaccines in use by both children and adults, were ever tested against placebos and that “nobody has any idea” how safe routine immunizations are.

As an infectious disease physician who curates an open database of hundreds of controlled vaccine trials involving over 6 million participants, I am intimately familiar with the decades of research on vaccine safety. I believe it is important to correct the record – especially because these statements come from the official who now oversees the agencies charged with protecting Americans’ health.

Do children really receive 92 mandatory shots?

In 1986, the childhood vaccine schedule contained about 11 doses protecting against seven diseases. Today, it includes roughly 50 injections covering 16 diseases. State school entry laws typically require 30 to 32 shots across 10 to 12 diseases. No state mandates COVID-19 vaccination. Where Kennedy’s “92 mandatory shots” figure comes from is unclear, but the actual number is significantly lower.

From a safety standpoint, the more important question is whether today’s schedule with additional vaccines might be too taxing for children’s immune systems. It isn’t, because as vaccine technology improved over the past several decades, the number of antigens in each vaccine dose is much lower than before.

Antigens are the molecules in vaccines that trigger a response from the immune system, training it to identify the specific pathogen. Some vaccines contain a minute amount of aluminum salt that serves as an adjuvant – a helper ingredient that improves the quality and staying power of the immune response, so each dose can protect with less antigen.

Those 11 doses in 1986 delivered more than 3,000 antigens and 1.5 milligrams of aluminum over 18 years. Today’s complete schedule delivers roughly 165 antigens – which is a 95% reduction – and 5-6 milligrams of aluminum in the same time frame. A single smallpox inoculation in 1900 exposed a child to more antigens than today’s complete series.

A black-and-white photo of a doctor in a white coat giving an injection to a boy who is held by a female nurse.
Jonas Salk, the inventor of the polio vaccine, administers a dose to a boy in 1954.
Underwood Archives via Getty Images

Since 1986, the United States has introduced vaccines against Haemophilus influenzae type b, hepatitis A and B, chickenpox, pneumococcal disease, rotavirus and human papillomavirus. Each addition represents a life-saving advance.

The incidence of Haemophilus influenzae type b, a bacterial infection that can cause pneumonia, meningitis and other severe diseases, has dropped by 99% in infants. Pediatric hepatitis infections are down more than 90%, and chickenpox hospitalizations are down about 90%. The Centers for Disease Control and Prevention estimates that vaccinating children born from 1994 to 2023 will avert 508 million illnesses and 1,129,000 premature deaths.

Placebo testing for vaccines

Kennedy has asserted that only COVID-19 vaccines have undergone rigorous safety trials in which they were tested against placebos. This is categorically wrong.

Of the 378 controlled trials in our database, 195 compared volunteers’ response to a vaccine with their response to a placebo. Of those, 159 gave volunteers only a salt water solution or another inert substance. Another 36 gave them just the adjuvant without any viral or bacterial material, as a way to see whether there were side effects from the antigen itself or the injection. Every routine childhood vaccine antigen appears in at least one such study.

The 1954 Salk polio trial, one of the largest clinical trials in medical history, enrolled more than 600,000 children and tested the vaccine by comparing it with a salt water control. Similar trials, which used a substance that has no biological effect as a control, were used to test Haemophilus influenzae type b, pneumococcal, rotavirus, influenza and HPV vaccines.

Once an effective vaccine exists, ethics boards require new versions be compared against that licensed standard because withholding proven protection from children would be unethical.

How unknown is the safety of widely used vaccines?

Kennedy has insisted on multiple occasions that “nobody has any idea” about vaccine safety profiles. Of the 378 trials in our database, the vast majority published detailed safety outcomes.

Beyond trials, the U.S. operates the Vaccine Adverse Event Reporting System, the Vaccine Safety Datalink and the PRISM network to monitor hundreds of millions of doses for rare problems. The Vaccine Adverse Event Reporting System works like an open mailbox where anyone – patients, parents, clinicians – can report a post-shot problem; the Vaccine Safety Datalink analyzes anonymized electronic health records from large health care systems to spot patterns; and PRISM scans billions of insurance claims in near-real time to confirm or rule out rare safety signals.

These systems led health officials to pull the first rotavirus vaccine in 1999 after it was linked to bowel obstruction, and to restrict the Johnson & Johnson COVID-19 vaccine in 2021 after rare clotting events. Few drug classes undergo such continuous surveillance and are subject to such swift corrective action when genuine risks emerge.

The conflicts of interest claim

On June 9, Kennedy took the unprecedented step of dissolving vetted members of the Advisory Committee on Immunization Practices, the expert body that advises the CDC on national vaccine policy. He has claimed repeatedly that the vast majority of serving members of the committee – 97% – had extensive conflicts of interest because of their entanglements with the pharmaceutical industry. Kennedy bases that number on a 2009 federal audit of conflict-of-interest paperwork, but that report looked at 17 CDC advisory committees, not specifically this vaccine committee. And it found no pervasive wrongdoing – 97% of disclosure forms only contained routine paperwork mistakes, such as information in the wrong box or a missing initial, and not hidden financial ties.

Reuters examined data from Open Payments, a government website that discloses health care providers’ relationships with industry, for all 17 voting members of the committee who were dismissed. Six received no more than US$80 from drugmakers over seven years, and four had no payments at all.

The remaining seven members accepted between $4,000 and $55,000 over seven years, mostly for modest consulting or travel. In other words, just 41% of the committee received anything more than pocket change from drugmakers. Committee members must divest vaccine company stock and recuse themselves from votes involving conflicts.

A term without a meaning

Kennedy has warned that vaccines cause “immune deregulation,” a term that has no basis in immunology. Vaccines train the immune system, and the diseases they prevent are the real threats to immune function.

Measles can wipe immune memory, leaving children vulnerable to other infections for years. COVID-19 can trigger multisystem inflammatory syndrome in children. Chronic hepatitis B can cause immune-mediated organ damage. Preventing these conditions protects people from immune system damage.

Today’s vaccine panel doesn’t just prevent infections; it deters doctor visits and thereby reduces unnecessary prescriptions for “just-in-case” antibiotics. It’s one of the rare places in medicine where physicians like me now do more good with less biological burden than we did 40 years ago.

The evidence is clear and publicly available: Vaccines have dramatically reduced childhood illness, disability and death on a historic scale.The Conversation

Jake Scott, Clinical Associate Professor of Infectious Diseases, Stanford University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post I’m a physician who has looked at hundreds of studies of vaccine safety, and here’s some of what RFK Jr. gets wrong appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Center-Left

This content presents a science-based and fact-checked critique of Robert F. Kennedy Jr.’s statements on vaccines, emphasizing the importance of established public health measures and vaccine safety. It supports mainstream medical consensus and public health institutions like the CDC, while challenging anti-vaccine rhetoric associated with certain political or ideological positions. The tone is objective but leans toward defending regulatory agencies and vaccine advocacy, which aligns more closely with Center-Left perspectives favoring public health expertise and government intervention in health policy.

Continue Reading

The Conversation

Cyberattacks shake voters’ trust in elections, regardless of party

Published

on

theconversation.com – Ryan Shandler, Professor of Cybersecurity and International Relations, Georgia Institute of Technology – 2025-06-27 07:29:00


American democracy faces a crisis of trust, with nearly half of Americans doubting election fairness. This mistrust stems not only from polarization and misinformation but also from unease about the digital infrastructure behind voting. While over 95% of ballots are now counted electronically, this complexity fuels skepticism, especially amid foreign disinformation campaigns that amplify doubts about election security. A study during the 2024 election showed that exposure to cyberattack reports, even unrelated to elections, significantly undermines voter confidence, particularly among those using digital voting machines. To protect democracy, it’s vital to pair secure technology with public education and treat trust as a national asset.

An election worker installs a touchscreen voting machine.
Ethan Miller/Getty Images

Ryan Shandler, Georgia Institute of Technology; Anthony J. DeMattee, Emory University, and Bruce Schneier, Harvard Kennedy School

American democracy runs on trust, and that trust is cracking.

Nearly half of Americans, both Democrats and Republicans, question whether elections are conducted fairly. Some voters accept election results only when their side wins. The problem isn’t just political polarization – it’s a creeping erosion of trust in the machinery of democracy itself.

Commentators blame ideological tribalism, misinformation campaigns and partisan echo chambers for this crisis of trust. But these explanations miss a critical piece of the puzzle: a growing unease with the digital infrastructure that now underpins nearly every aspect of how Americans vote.

The digital transformation of American elections has been swift and sweeping. Just two decades ago, most people voted using mechanical levers or punch cards. Today, over 95% of ballots are counted electronically. Digital systems have replaced poll books, taken over voter identity verification processes and are integrated into registration, counting, auditing and voting systems.

This technological leap has made voting more accessible and efficient, and sometimes more secure. But these new systems are also more complex. And that complexity plays into the hands of those looking to undermine democracy.

In recent years, authoritarian regimes have refined a chillingly effective strategy to chip away at Americans’ faith in democracy by relentlessly sowing doubt about the tools U.S. states use to conduct elections. It’s a sustained campaign to fracture civic faith and make Americans believe that democracy is rigged, especially when their side loses.

This is not cyberwar in the traditional sense. There’s no evidence that anyone has managed to break into voting machines and alter votes. But cyberattacks on election systems don’t need to succeed to have an effect. Even a single failed intrusion, magnified by sensational headlines and political echo chambers, is enough to shake public trust. By feeding into existing anxiety about the complexity and opacity of digital systems, adversaries create fertile ground for disinformation and conspiracy theories.

Just before the 2024 presidential election, Director of the Cybersecurity and Infrastructure Security Agency Jen Easterly explains how foreign influence campaigns erode trust in U.S. elections.

Testing cyber fears

To test this dynamic, we launched a study to uncover precisely how cyberattacks corroded trust in the vote during the 2024 U.S. presidential race. We surveyed more than 3,000 voters before and after election day, testing them using a series of fictional but highly realistic breaking news reports depicting cyberattacks against critical infrastructure. We randomly assigned participants to watch different types of news reports: some depicting cyberattacks on election systems, others on unrelated infrastructure such as the power grid, and a third, neutral control group.

The results, which are under peer review, were both striking and sobering. Mere exposure to reports of cyberattacks undermined trust in the electoral process – regardless of partisanship. Voters who supported the losing candidate experienced the greatest drop in trust, with two-thirds of Democratic voters showing heightened skepticism toward the election results.

But winners too showed diminished confidence. Even though most Republican voters, buoyed by their victory, accepted the overall security of the election, the majority of those who viewed news reports about cyberattacks remained suspicious.

The attacks didn’t even have to be related to the election. Even cyberattacks against critical infrastructure such as utilities had spillover effects. Voters seemed to extrapolate: “If the power grid can be hacked, why should I believe that voting machines are secure?”

Strikingly, voters who used digital machines to cast their ballots were the most rattled. For this group of people, belief in the accuracy of the vote count fell by nearly twice as much as that of voters who cast their ballots by mail and who didn’t use any technology. Their firsthand experience with the sorts of systems being portrayed as vulnerable personalized the threat.

It’s not hard to see why. When you’ve just used a touchscreen to vote, and then you see a news report about a digital system being breached, the leap in logic isn’t far.

Our data suggests that in a digital society, perceptions of trust – and distrust – are fluid, contagious and easily activated. The cyber domain isn’t just about networks and code. It’s also about emotions: fear, vulnerability and uncertainty.

Firewall of trust

Does this mean we should scrap electronic voting machines? Not necessarily.

Every election system, digital or analog, has flaws. And in many respects, today’s high-tech systems have solved the problems of the past with voter-verifiable paper ballots. Modern voting machines reduce human error, increase accessibility and speed up the vote count. No one misses the hanging chads of 2000.

But technology, no matter how advanced, cannot instill legitimacy on its own. It must be paired with something harder to code: public trust. In an environment where foreign adversaries amplify every flaw, cyberattacks can trigger spirals of suspicion. It is no longer enough for elections to be secure − voters must also perceive them to be secure.

That’s why public education surrounding elections is now as vital to election security as firewalls and encrypted networks. It’s vital that voters understand how elections are run, how they’re protected and how failures are caught and corrected. Election officials, civil society groups and researchers can teach how audits work, host open-source verification demonstrations and ensure that high-tech electoral processes are comprehensible to voters.

We believe this is an essential investment in democratic resilience. But it needs to be proactive, not reactive. By the time the doubt takes hold, it’s already too late.

Just as crucially, we are convinced that it’s time to rethink the very nature of cyber threats. People often imagine them in military terms. But that framework misses the true power of these threats. The danger of cyberattacks is not only that they can destroy infrastructure or steal classified secrets, but that they chip away at societal cohesion, sow anxiety and fray citizens’ confidence in democratic institutions. These attacks erode the very idea of truth itself by making people doubt that anything can be trusted.

If trust is the target, then we believe that elected officials should start to treat trust as a national asset: something to be built, renewed and defended. Because in the end, elections aren’t just about votes being counted – they’re about people believing that those votes count.

And in that belief lies the true firewall of democracy.The Conversation

Ryan Shandler, Professor of Cybersecurity and International Relations, Georgia Institute of Technology; Anthony J. DeMattee, Data Scientist and Adjunct Instructor, Emory University, and Bruce Schneier, Adjunct Lecturer in Public Policy, Harvard Kennedy School

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Cyberattacks shake voters’ trust in elections, regardless of party appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

This article presents a balanced and fact-focused analysis of trust issues surrounding American elections, emphasizing concerns shared across the political spectrum. It highlights the complexity of digital voting infrastructure and the external threats posed by misinformation and foreign influence without promoting partisan viewpoints. The tone is neutral, grounded in data and research, avoiding ideological framing or advocacy. The piece calls for bipartisan solutions like public education and institutional trust-building, reflecting a centrist perspective that prioritizes democratic resilience over partisan blame.

Continue Reading

Trending